ocr_rec.cpp 6.4 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>

namespace PaddleOCR {

void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
Z
zhoujun 已提交
20
                         cv::Mat &img, Classifier *cls) {
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22 23 24 25 26 27 28
  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat crop_img;
  cv::Mat resize_img;

  std::cout << "The predicted text is :" << std::endl;
  int index = 0;
  for (int i = boxes.size() - 1; i >= 0; i--) {
littletomatodonkey's avatar
littletomatodonkey 已提交
29
    crop_img = GetRotateCropImage(srcimg, boxes[i]);
Z
zhoujun 已提交
30 31 32
    if (cls != nullptr) {
      crop_img = cls->Run(crop_img);
    }
littletomatodonkey's avatar
littletomatodonkey 已提交
33 34 35 36 37 38 39 40

    float wh_ratio = float(crop_img.cols) / float(crop_img.rows);

    this->resize_op_.Run(crop_img, resize_img, wh_ratio);

    this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                            this->is_scale_);

littletomatodonkey's avatar
littletomatodonkey 已提交
41
    std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
littletomatodonkey's avatar
littletomatodonkey 已提交
42

littletomatodonkey's avatar
littletomatodonkey 已提交
43
    this->permute_op_.Run(&resize_img, input.data());
littletomatodonkey's avatar
littletomatodonkey 已提交
44

45
    // Inference.
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    if (this->use_zero_copy_run_) {
      auto input_names = this->predictor_->GetInputNames();
      auto input_t = this->predictor_->GetInputTensor(input_names[0]);
      input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
      input_t->copy_from_cpu(input.data());
      this->predictor_->ZeroCopyRun();
    } else {
      paddle::PaddleTensor input_t;
      input_t.shape = {1, 3, resize_img.rows, resize_img.cols};
      input_t.data =
          paddle::PaddleBuf(input.data(), input.size() * sizeof(float));
      input_t.dtype = PaddleDType::FLOAT32;
      std::vector<paddle::PaddleTensor> outputs;
      this->predictor_->Run({input_t}, &outputs, 1);
    }
littletomatodonkey's avatar
littletomatodonkey 已提交
61

Z
zhoujun 已提交
62
    std::vector<float> predict_batch;
littletomatodonkey's avatar
littletomatodonkey 已提交
63 64
    auto output_names = this->predictor_->GetOutputNames();
    auto output_t = this->predictor_->GetOutputTensor(output_names[0]);
Z
zhoujun 已提交
65
    auto predict_shape = output_t->shape();
66

Z
zhoujun 已提交
67
    int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
littletomatodonkey's avatar
littletomatodonkey 已提交
68
                                  std::multiplies<int>());
Z
zhoujun 已提交
69
    predict_batch.resize(out_num);
littletomatodonkey's avatar
littletomatodonkey 已提交
70

Z
zhoujun 已提交
71
    output_t->copy_to_cpu(predict_batch.data());
littletomatodonkey's avatar
littletomatodonkey 已提交
72

Z
zhoujun 已提交
73 74
    // ctc decode
    std::vector<std::string> str_res;
littletomatodonkey's avatar
littletomatodonkey 已提交
75
    int argmax_idx;
Z
zhoujun 已提交
76
    int last_index = 0;
littletomatodonkey's avatar
littletomatodonkey 已提交
77 78 79 80
    float score = 0.f;
    int count = 0;
    float max_value = 0.0f;

Z
zhoujun 已提交
81
    for (int n = 0; n < predict_shape[1]; n++) {
littletomatodonkey's avatar
littletomatodonkey 已提交
82
      argmax_idx =
Z
zhoujun 已提交
83 84
          int(Utility::argmax(&predict_batch[n * predict_shape[2]],
                              &predict_batch[(n + 1) * predict_shape[2]]));
littletomatodonkey's avatar
littletomatodonkey 已提交
85
      max_value =
Z
zhoujun 已提交
86 87 88 89
          float(*std::max_element(&predict_batch[n * predict_shape[2]],
                                  &predict_batch[(n + 1) * predict_shape[2]]));

      if (argmax_idx > 0 && (not(i > 0 && argmax_idx == last_index))) {
littletomatodonkey's avatar
littletomatodonkey 已提交
90 91
        score += max_value;
        count += 1;
Z
zhoujun 已提交
92
        str_res.push_back(label_list_[argmax_idx]);
littletomatodonkey's avatar
littletomatodonkey 已提交
93
      }
Z
zhoujun 已提交
94
      last_index = argmax_idx;
littletomatodonkey's avatar
littletomatodonkey 已提交
95 96
    }
    score /= count;
Z
zhoujun 已提交
97 98 99
    for (int i = 0; i < str_res.size(); i++) {
      std::cout << str_res[i];
    }
littletomatodonkey's avatar
littletomatodonkey 已提交
100 101 102 103
    std::cout << "\tscore: " << score << std::endl;
  }
}

littletomatodonkey's avatar
littletomatodonkey 已提交
104
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
littletomatodonkey's avatar
littletomatodonkey 已提交
105
  AnalysisConfig config;
T
tink2123 已提交
106
  config.SetModel(model_dir + ".pdmodel", model_dir + ".pdiparams");
littletomatodonkey's avatar
littletomatodonkey 已提交
107

littletomatodonkey's avatar
littletomatodonkey 已提交
108 109 110 111
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
littletomatodonkey 已提交
112 113
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
Z
zhoujun 已提交
114 115
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
littletomatodonkey's avatar
littletomatodonkey 已提交
116
    }
littletomatodonkey's avatar
littletomatodonkey 已提交
117 118
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey 已提交
119

littletomatodonkey's avatar
littletomatodonkey 已提交
120
  // false for zero copy tensor
121
  // true for commom tensor
122
  config.SwitchUseFeedFetchOps(!this->use_zero_copy_run_);
littletomatodonkey's avatar
littletomatodonkey 已提交
123
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey 已提交
124
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey 已提交
125 126 127 128

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
littletomatodonkey's avatar
littletomatodonkey 已提交
129
  config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey 已提交
130 131 132 133

  this->predictor_ = CreatePaddlePredictor(config);
}

littletomatodonkey's avatar
littletomatodonkey 已提交
134 135
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
                                           std::vector<std::vector<int>> box) {
littletomatodonkey's avatar
littletomatodonkey 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  cv::Mat image;
  srcimage.copyTo(image);
  std::vector<std::vector<int>> points = box;

  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));

  cv::Mat img_crop;
  image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

  for (int i = 0; i < points.size(); i++) {
    points[i][0] -= left;
    points[i][1] -= top;
  }

  int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                pow(points[0][1] - points[1][1], 2)));
  int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                 pow(points[0][1] - points[3][1], 2)));

  cv::Point2f pts_std[4];
  pts_std[0] = cv::Point2f(0., 0.);
  pts_std[1] = cv::Point2f(img_crop_width, 0.);
  pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
  pts_std[3] = cv::Point2f(0.f, img_crop_height);

  cv::Point2f pointsf[4];
  pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
  pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
  pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
  pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

  cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

  cv::Mat dst_img;
  cv::warpPerspective(img_crop, dst_img, M,
                      cv::Size(img_crop_width, img_crop_height),
                      cv::BORDER_REPLICATE);

  if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
    cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
    cv::transpose(dst_img, srcCopy);
    cv::flip(srcCopy, srcCopy, 0);
    return srcCopy;
  } else {
    return dst_img;
  }
}

T
tink2123 已提交
189
} // namespace PaddleOCR