rec_ctc_head.py 1.9 KB
Newer Older
W
WenmuZhou 已提交
1
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
L
LDOUBLEV 已提交
2
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15 16 17 18 19 20 21

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import paddle
W
WenmuZhou 已提交
22
from paddle import ParamAttr, nn
23
from paddle.nn import functional as F
W
WenmuZhou 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51


def get_para_bias_attr(l2_decay, k, name):
    regularizer = paddle.fluid.regularizer.L2Decay(l2_decay)
    stdv = 1.0 / math.sqrt(k * 1.0)
    initializer = nn.initializer.Uniform(-stdv, stdv)
    weight_attr = ParamAttr(
        regularizer=regularizer, initializer=initializer, name=name + "_w_attr")
    bias_attr = ParamAttr(
        regularizer=regularizer, initializer=initializer, name=name + "_b_attr")
    return [weight_attr, bias_attr]


class CTC(nn.Layer):
    def __init__(self, in_channels, out_channels, fc_decay=1e-5, **kwargs):
        super(CTC, self).__init__()
        weight_attr, bias_attr = get_para_bias_attr(
            l2_decay=fc_decay, k=in_channels, name='ctc_fc')
        self.fc = nn.Linear(
            in_channels,
            out_channels,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            name='ctc_fc')
        self.out_channels = out_channels

    def forward(self, x, labels=None):
        predicts = self.fc(x)
52 53
        if not self.training:
            predicts = F.softmax(predicts, axis=2)
L
LDOUBLEV 已提交
54
        return predicts