predict_table.py 8.3 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import subprocess

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import copy
import numpy as np
import time
import tools.infer.utility as utility
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
import ppstructure.table.predict_structure as predict_strture
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger
from ppocr.utils.table_utils.matcher import distance, compute_iou

logger = get_logger()


def expand(pix, det_box, shape):
    x0, y0, x1, y1 = det_box
    #     print(shape)
    h, w, c = shape
    tmp_x0 = x0 - pix
    tmp_x1 = x1 + pix
    tmp_y0 = y0 - pix
    tmp_y1 = y1 + pix
    x0_ = tmp_x0 if tmp_x0 >= 0 else 0
    x1_ = tmp_x1 if tmp_x1 <= w else w
    y0_ = tmp_y0 if tmp_y0 >= 0 else 0
    y1_ = tmp_y1 if tmp_y1 <= h else h
    return x0_, y0_, x1_, y1_


class TableSystem(object):
    def __init__(self, args):
        self.text_detector = predict_det.TextDetector(args)
        self.text_recognizer = predict_rec.TextRecognizer(args)
        self.table_structurer = predict_strture.TableStructurer(args)
        self.use_angle_cls = args.use_angle_cls
        self.drop_score = args.drop_score

    def __call__(self, img):
        ori_im = img.copy()
        structure_res, elapse = self.table_structurer(copy.deepcopy(img))
        dt_boxes, elapse = self.text_detector(copy.deepcopy(img))
        dt_boxes = sorted_boxes(dt_boxes)

        r_boxes = []
        for box in dt_boxes:
            x_min = box[:, 0].min() - 1
            x_max = box[:, 0].max() + 1
            y_min = box[:, 1].min() - 1
            y_max = box[:, 1].max() + 1
            box = [x_min, y_min, x_max, y_max]
            r_boxes.append(box)
        dt_boxes = np.array(r_boxes)

        # logger.info("dt_boxes num : {}, elapse : {}".format(
        #     len(dt_boxes), elapse))
        if dt_boxes is None:
            return None, None
        img_crop_list = []

        for i in range(len(dt_boxes)):
            det_box = dt_boxes[i]
            x0, y0, x1, y1 = expand(2, det_box, ori_im.shape)
            text_rect = ori_im[int(y0):int(y1), int(x0):int(x1), :]
            img_crop_list.append(text_rect)
        rec_res, elapse = self.text_recognizer(img_crop_list)
        # logger.info("rec_res num  : {}, elapse : {}".format(
        #     len(rec_res), elapse))

        pred_html, pred = self.rebuild_table(structure_res, dt_boxes, rec_res)
        return pred_html

    def rebuild_table(self, structure_res, dt_boxes, rec_res):
        pred_structures, pred_bboxes = structure_res
        matched_index = self.match_result(dt_boxes, pred_bboxes)
        pred_html, pred = self.get_pred_html(pred_structures, matched_index, rec_res)
        return pred_html, pred

    def match_result(self, dt_boxes, pred_bboxes):
        matched = {}
        for i, gt_box in enumerate(dt_boxes):
            # gt_box = [np.min(gt_box[:, 0]), np.min(gt_box[:, 1]), np.max(gt_box[:, 0]), np.max(gt_box[:, 1])]
            distances = []
            for j, pred_box in enumerate(pred_bboxes):
                distances.append(
                    (distance(gt_box, pred_box), 1. - compute_iou(gt_box, pred_box)))  # 获取两两cell之间的L1距离和 1- IOU
            sorted_distances = distances.copy()
            # 根据距离和IOU挑选最"近"的cell
            sorted_distances = sorted(sorted_distances, key=lambda item: (item[1], item[0]))
            if distances.index(sorted_distances[0]) not in matched.keys():
                matched[distances.index(sorted_distances[0])] = [i]
            else:
                matched[distances.index(sorted_distances[0])].append(i)
        return matched

    def get_pred_html(self, pred_structures, matched_index, ocr_contents):
        end_html = []
        td_index = 0
        for tag in pred_structures:
            if '</td>' in tag:
                if td_index in matched_index.keys():
                    b_with = False
                    if '<b>' in ocr_contents[matched_index[td_index][0]] and len(matched_index[td_index]) > 1:
                        b_with = True
                        end_html.extend('<b>')
                    for i, td_index_index in enumerate(matched_index[td_index]):
                        content = ocr_contents[td_index_index][0]
                        if len(matched_index[td_index]) > 1:
                            if len(content) == 0:
                                continue
                            if content[0] == ' ':
                                content = content[1:]
                            if '<b>' in content:
                                content = content[3:]
                            if '</b>' in content:
                                content = content[:-4]
                            if len(content) == 0:
                                continue
                            if i != len(matched_index[td_index]) - 1 and ' ' != content[-1]:
                                content += ' '
                        end_html.extend(content)
                    if b_with:
                        end_html.extend('</b>')

                end_html.append(tag)
                td_index += 1
            else:
                end_html.append(tag)
        return ''.join(end_html), end_html


def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
        dt_boxes(array):detected text boxes with shape [4, 2]
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
        if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
                (_boxes[i + 1][0][0] < _boxes[i][0][0]):
            tmp = _boxes[i]
            _boxes[i] = _boxes[i + 1]
            _boxes[i + 1] = tmp
    return _boxes

def to_excel(html_table, excel_path):
    from tablepyxl import tablepyxl
    tablepyxl.document_to_xl(html_table, excel_path)


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    image_file_list = image_file_list[args.process_id::args.total_process_num]
    excel_save_folder = 'output/table'
    os.makedirs(excel_save_folder, exist_ok=True)

    text_sys = TableSystem(args)
    img_num = len(image_file_list)
    for i, image_file in enumerate(image_file_list):
        logger.info("[{}/{}] {}".format(i, img_num, image_file))
        img, flag = check_and_read_gif(image_file)
        excel_path = os.path.join(excel_save_folder, os.path.basename(image_file).split('.')[0] + '.xlsx')
        if not flag:
            img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        starttime = time.time()
        pred_html = text_sys(img)

        to_excel(pred_html, excel_path)
        logger.info('excel saved to {}'.format(excel_path))
        logger.info(pred_html)
        elapse = time.time() - starttime
        logger.info("Predict time : {:.3f}s".format(elapse))


if __name__ == "__main__":
    args = utility.parse_args()
    if args.use_mp:
        p_list = []
        total_process_num = args.total_process_num
        for process_id in range(total_process_num):
            cmd = [sys.executable, "-u"] + sys.argv + [
                "--process_id={}".format(process_id),
                "--use_mp={}".format(False)
            ]
            p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
            p_list.append(p)
        for p in p_list:
            p.wait()
    else:
        main(args)