det_resnet.py 7.7 KB
Newer Older
W
wangjingyeye 已提交
1
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
W
wangjingyeye 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform

import math

from paddle.vision.ops import DeformConv2D
from paddle.regularizer import L2Decay
from paddle.nn.initializer import Normal, Constant, XavierUniform
from .det_resnet_vd import DeformableConvV2, ConvBNLayer


class BottleneckBlock(nn.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 is_dcn=False):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=1,
            act="relu", )
        self.conv1 = ConvBNLayer(
            in_channels=num_filters,
            out_channels=num_filters,
            kernel_size=3,
            stride=stride,
            act="relu",
            is_dcn=is_dcn,
            dcn_groups=1, )
        self.conv2 = ConvBNLayer(
            in_channels=num_filters,
            out_channels=num_filters * 4,
            kernel_size=1,
            act=None, )

        if not shortcut:
            self.short = ConvBNLayer(
                in_channels=num_channels,
                out_channels=num_filters * 4,
                kernel_size=1,
                stride=stride, )

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = paddle.add(x=short, y=conv2)
        y = F.relu(y)
        return y


class BasicBlock(nn.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 name=None):
        super(BasicBlock, self).__init__()
        self.stride = stride
        self.conv0 = ConvBNLayer(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=3,
            stride=stride,
            act="relu")
        self.conv1 = ConvBNLayer(
            in_channels=num_filters,
            out_channels=num_filters,
            kernel_size=3,
            act=None)

        if not shortcut:
            self.short = ConvBNLayer(
                in_channels=num_channels,
                out_channels=num_filters,
                kernel_size=1,
                stride=stride)

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = paddle.add(x=short, y=conv1)
        y = F.relu(y)
        return y


class ResNet(nn.Layer):
    def __init__(self,
                 in_channels=3,
                 layers=50,
                 out_indices=None,
                 dcn_stage=None):
        super(ResNet, self).__init__()

        self.layers = layers
        self.input_image_channel = in_channels

        supported_layers = [18, 34, 50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        self.dcn_stage = dcn_stage if dcn_stage is not None else [
            False, False, False, False
        ]
        self.out_indices = out_indices if out_indices is not None else [
            0, 1, 2, 3
        ]

        self.conv = ConvBNLayer(
            in_channels=self.input_image_channel,
            out_channels=64,
            kernel_size=7,
            stride=2,
            act="relu", )
        self.pool2d_max = MaxPool2D(
            kernel_size=3,
            stride=2,
            padding=1, )

        self.stages = []
        self.out_channels = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                block_list = []
                is_dcn = self.dcn_stage[block]
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        conv_name,
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            is_dcn=is_dcn))
                    block_list.append(bottleneck_block)
                    shortcut = True
                if block in self.out_indices:
                    self.out_channels.append(num_filters[block] * 4)
                self.stages.append(nn.Sequential(*block_list))
        else:
            for block in range(len(depth)):
                shortcut = False
                block_list = []
                # is_dcn = self.dcn_stage[block]
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                    basic_block = self.add_sublayer(
                        conv_name,
                        BasicBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut))
                    block_list.append(basic_block)
                    shortcut = True
                if block in self.out_indices:
                    self.out_channels.append(num_filters[block])
                self.stages.append(nn.Sequential(*block_list))

    def forward(self, inputs):
        y = self.conv(inputs)
        y = self.pool2d_max(y)
        out = []
        for i, block in enumerate(self.stages):
            y = block(y)
            if i in self.out_indices:
                out.append(y)
        return out