quickstart_en.md 12.9 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2 3 4 5 6 7 8
# PP-Structure Quick Start

- [1. Install package](#1)
- [2. Use](#2)
    - [2.1 Use by command line](#21)
        - [2.1.1 layout analysis + table recognition](#211)
        - [2.1.2 layout analysis](#212)
        - [2.1.3 table recognition](#213)
9
        - [2.1.4 DocVQA](#214)
文幕地方's avatar
文幕地方 已提交
10 11 12 13
    - [2.2 Use by code](#22)
        - [2.2.1 layout analysis + table recognition](#221)
        - [2.2.2 layout analysis](#222)
        - [2.2.3 table recognition](#223)
14
        - [2.2.4 DocVQA](#224)
文幕地方's avatar
文幕地方 已提交
15 16
    - [2.3 Result description](#23)
        - [2.3.1 layout analysis + table recognition](#231)
M
update  
MissPenguin 已提交
17
        - [2.3.2 DocVQA](#232)
文幕地方's avatar
文幕地方 已提交
18
    - [2.4 Parameter Description](#24)
M
update  
MissPenguin 已提交
19 20 21


<a name="1"></a>
文幕地方's avatar
文幕地方 已提交
22
## 1. Install package
M
update  
MissPenguin 已提交
23 24

```bash
文幕地方's avatar
文幕地方 已提交
25
# Install paddleocr, version 2.5+ is recommended
文幕地方's avatar
文幕地方 已提交
26
pip3 install "paddleocr>=2.5"
文幕地方's avatar
文幕地方 已提交
27
# Install layoutparser (if you do not use the layout analysis, you can skip it)
28
pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
文幕地方's avatar
文幕地方 已提交
29
# Install the DocVQA dependency package paddlenlp (if you do not use the DocVQA, you can skip it)
M
update  
MissPenguin 已提交
30 31 32 33 34
pip install paddlenlp

```

<a name="2"></a>
文幕地方's avatar
文幕地方 已提交
35
## 2. Use
M
update  
MissPenguin 已提交
36 37

<a name="21"></a>
文幕地方's avatar
文幕地方 已提交
38
### 2.1 Use by command line
39

M
update  
MissPenguin 已提交
40
<a name="211"></a>
文幕地方's avatar
文幕地方 已提交
41
#### 2.1.1 layout analysis + table recognition
M
update  
MissPenguin 已提交
42
```bash
43
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure
M
update  
MissPenguin 已提交
44 45 46
```

<a name="212"></a>
文幕地方's avatar
文幕地方 已提交
47
#### 2.1.2 layout analysis
48 49 50 51 52
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --table=false --ocr=false
```

<a name="213"></a>
文幕地方's avatar
文幕地方 已提交
53
#### 2.1.3 table recognition
54 55 56 57 58 59
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/table.jpg --type=structure --layout=false
```

<a name="214"></a>
#### 2.1.4 DocVQA
M
update  
MissPenguin 已提交
60

文幕地方's avatar
文幕地方 已提交
61
Please refer to: [Documentation Visual Q&A](../vqa/README.md) .
M
update  
MissPenguin 已提交
62 63

<a name="22"></a>
文幕地方's avatar
文幕地方 已提交
64
### 2.2 Use by code
M
update  
MissPenguin 已提交
65 66

<a name="221"></a>
文幕地方's avatar
文幕地方 已提交
67
#### 2.2.1 layout analysis + table recognition
M
update  
MissPenguin 已提交
68 69 70 71 72 73 74 75

```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res

table_engine = PPStructure(show_log=True)

76 77
save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
M
update  
MissPenguin 已提交
78 79 80 81 82 83 84 85 86 87
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

from PIL import Image

88
font_path = 'PaddleOCR/doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
M
update  
MissPenguin 已提交
89 90 91 92 93 94 95
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

<a name="222"></a>
文幕地方's avatar
文幕地方 已提交
96
#### 2.2.2 layout analysis
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res

table_engine = PPStructure(table=False, ocr=False, show_log=True)

save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)
```

<a name="223"></a>
文幕地方's avatar
文幕地方 已提交
117
#### 2.2.3 table recognition
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res

table_engine = PPStructure(layout=False, show_log=True)

save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/table.jpg'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)
```

<a name="224"></a>
#### 2.2.4 DocVQA
M
update  
MissPenguin 已提交
139

文幕地方's avatar
文幕地方 已提交
140
Please refer to: [Documentation Visual Q&A](../vqa/README.md) .
M
update  
MissPenguin 已提交
141 142

<a name="23"></a>
文幕地方's avatar
文幕地方 已提交
143 144 145
### 2.3 Result description

The return of PP-Structure is a list of dicts, the example is as follows:
M
update  
MissPenguin 已提交
146 147

<a name="231"></a>
文幕地方's avatar
文幕地方 已提交
148
#### 2.3.1 layout analysis + table recognition
M
update  
MissPenguin 已提交
149 150 151 152 153 154 155 156 157
```shell
[
  {   'type': 'Text',
      'bbox': [34, 432, 345, 462],
      'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
                [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent  ', 0.465441)])
  }
]
```
文幕地方's avatar
文幕地方 已提交
158
Each field in dict is described as follows:
M
update  
MissPenguin 已提交
159

文幕地方's avatar
文幕地方 已提交
160 161 162 163 164
| field            | description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| --------------- |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|type| Type of image area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|bbox| The coordinates of the image area in the original image, respectively [upper left corner x, upper left corner y, lower right corner x, lower right corner y].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|res| OCR or table recognition result of the image area. <br> table: a dict with field descriptions as follows: <br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `html`: html str of table.<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; In the code usage mode, set return_ocr_result_in_table=True whrn call can get the detection and recognition results of each text in the table area, corresponding to the following fields: <br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `boxes`: text detection boxes.<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `rec_res`: text recognition results.<br> OCR: A tuple containing the detection boxes and recognition results of each single text. |
M
update  
MissPenguin 已提交
165

文幕地方's avatar
文幕地方 已提交
166
After the recognition is completed, each image will have a directory with the same name under the directory specified by the `output` field. Each table in the image will be stored as an excel, and the picture area will be cropped and saved. The filename of  excel and picture is their coordinates in the image.
M
update  
MissPenguin 已提交
167 168 169
  ```
  /output/table/1/
    └─ res.txt
文幕地方's avatar
文幕地方 已提交
170 171 172
    └─ [454, 360, 824, 658].xlsx        table recognition result
    └─ [16, 2, 828, 305].jpg            picture in Image
    └─ [17, 361, 404, 711].xlsx        table recognition result
M
update  
MissPenguin 已提交
173 174 175 176 177
  ```

<a name="232"></a>
#### 2.3.2 DocVQA

文幕地方's avatar
文幕地方 已提交
178
Please refer to: [Documentation Visual Q&A](../vqa/README.md) .
M
update  
MissPenguin 已提交
179 180

<a name="24"></a>
文幕地方's avatar
文幕地方 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
### 2.4 Parameter Description

| field                | description                                                                                                                                                                                                                                                      | default                                                 |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| output               | The save path of result                                                                                                                                                                                                                                          | ./output/table                                          |
| table_max_len        | When the table structure model predicts, the long side of the image                                                                                                                                                                                              | 488                                                     |
| table_model_dir      | the path of table structure model                                                                                                                                                                                                                                | None                                                    |
| table_char_dict_path | the dict path of table structure model                                                                                                                                                                                                                           | ../ppocr/utils/dict/table_structure_dict.txt            |
| layout_path_model    | The model path of the layout analysis model, which can be an online address or a local path. When it is a local path, layout_label_map needs to be set. In command line mode, use --layout_label_map='{0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"}' | lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config |
| layout_label_map     | Layout analysis model model label mapping dictionary path                                                                                                                                                                                                        | None                                                    |
| model_name_or_path   | the model path of VQA SER model                                                                                                                                                                                                                                  | None                                                    |
| max_seq_length       | the max token length of VQA SER model                                                                                                                                                                                                                            | 512                                                     |
| label_map_path       | the label path of VQA SER model                                                                                                                                                                                                                                  | ./vqa/labels/labels_ser.txt                             |
| layout               | Whether to perform layout analysis in forward                                                                                                                                                                                                                    | True                                                    |
| table                | Whether to perform table recognition in forward                                                                                                                                                                                                                  | True                                                    |
| ocr                  | Whether to perform ocr for non-table areas in layout analysis. When layout is False, it will be automatically set to False                                                                                                                                                                                                                 | True                                                    |

Most of the parameters are consistent with the PaddleOCR whl package, see [whl package documentation](../../doc/doc_en/whl.md)