README.md 12.7 KB
Newer Older
G
grasswolfs 已提交
1
[English](README_en.md) | 简体中文
2

G
grasswolfs 已提交
3 4
## 简介
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。
D
dyning 已提交
5

G
grasswolfs 已提交
6
**近期更新**
D
dyning 已提交
7
- 2020.8.26 更新OCR相关的84个常见问题及解答,具体参考[FAQ](./doc/doc_ch/FAQ.md)
G
grasswolfs 已提交
8 9 10 11 12 13
- 2020.8.24 支持通过whl包安装使用PaddleOCR,具体参考[Paddleocr Package使用说明](./doc/doc_ch/whl.md)
- 2020.8.21 更新8月18日B站直播课回放和PPT,课节2,易学易用的OCR工具大礼包,[获取地址](https://aistudio.baidu.com/aistudio/education/group/info/1519)
- 2020.8.16 开源文本检测算法[SAST](https://arxiv.org/abs/1908.05498)和文本识别算法[SRN](https://arxiv.org/abs/2003.12294)
- 2020.7.23 发布7月21日B站直播课回放和PPT,课节1,PaddleOCR开源大礼包全面解读,[获取地址](https://aistudio.baidu.com/aistudio/course/introduce/1519)
- 2020.7.15 添加基于EasyEdge和Paddle-Lite的移动端DEMO,支持iOS和Android系统
- [more](./doc/doc_ch/update.md)
D
dyning 已提交
14

D
dyning 已提交
15

G
grasswolfs 已提交
16 17 18 19 20 21 22 23 24
## 特性
- 超轻量级中文OCR模型,总模型仅8.6M
    - 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
    - 检测模型DB(4.1M)+识别模型CRNN(4.5M)
- 实用通用中文OCR模型
- 多种预测推理部署方案,包括服务部署和端侧部署
- 多种文本检测训练算法,EAST、DB、SAST
- 多种文本识别训练算法,Rosetta、CRNN、STAR-Net、RARE、SRN
- 可运行于Linux、Windows、MacOS等多种系统
T
tink2123 已提交
25

G
grasswolfs 已提交
26
## 快速体验
L
LDOUBLEV 已提交
27

G
grasswolfs 已提交
28 29 30
<div align="center">
    <img src="doc/imgs_results/11.jpg" width="800">
</div>
D
dyning 已提交
31

G
grasswolfs 已提交
32
上图是超轻量级中文OCR模型效果展示,更多效果图请见[效果展示页面](./doc/doc_ch/visualization.md)
D
dyning 已提交
33

G
grasswolfs 已提交
34 35
- 超轻量级中文OCR在线体验地址:https://www.paddlepaddle.org.cn/hub/scene/ocr
- 移动端DEMO体验(基于EasyEdge和Paddle-Lite, 支持iOS和Android系统):[安装包二维码获取地址](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
D
dyning 已提交
36

G
grasswolfs 已提交
37
   Android手机也可以扫描下面二维码安装体验。
D
dyning 已提交
38 39 40 41 42

<div align="center">
<img src="./doc/ocr-android-easyedge.png"  width = "200" height = "200" />
</div>

D
dyning 已提交
43

G
grasswolfs 已提交
44
## 中文OCR模型列表
D
dyning 已提交
45

G
grasswolfs 已提交
46
|模型名称|模型简介|检测模型地址|识别模型地址|支持空格的识别模型地址|
D
dyning 已提交
47
|-|-|-|-|-|
G
grasswolfs 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|chinese_db_crnn_mobile|超轻量级中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|chinese_db_crnn_server|通用中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)

## 文档教程
- [快速安装](./doc/doc_ch/installation.md)
- [中文OCR模型快速使用](./doc/doc_ch/quickstart.md)
- 算法介绍
    - [文本检测](#文本检测算法)
    - [文本识别](#文本识别算法)
- 模型训练/评估
    - [文本检测](./doc/doc_ch/detection.md)
    - [文本识别](./doc/doc_ch/recognition.md)
    - [yml参数配置文件介绍](./doc/doc_ch/config.md)
    - [中文OCR训练预测技巧](./doc/doc_ch/tricks.md)
- 预测部署
    - [基于Python预测引擎推理](./doc/doc_ch/inference.md)
    - [基于C++预测引擎推理](./deploy/cpp_infer/readme.md)
    - [服务化部署](./doc/doc_ch/serving.md)
    - [端侧部署](./deploy/lite/readme.md)
    - 模型量化压缩(coming soon)
    - [Benchmark](./doc/doc_ch/benchmark.md)
- 数据集
    - [通用中英文OCR数据集](./doc/doc_ch/datasets.md)
    - [手写中文OCR数据集](./doc/doc_ch/handwritten_datasets.md)
    - [垂类多语言OCR数据集](./doc/doc_ch/vertical_and_multilingual_datasets.md)
    - [常用数据标注工具](./doc/doc_ch/data_annotation.md)
    - [常用数据合成工具](./doc/doc_ch/data_synthesis.md)
- 效果展示
    - [超轻量级中文OCR效果展示](#超轻量级中文OCR效果展示)
    - [通用中文OCR效果展示](#通用中文OCR效果展示)
    - [支持空格的中文OCR效果展示](#支持空格的中文OCR效果展示)
- FAQ
    - [【精选】OCR精选10个问题](./doc/doc_ch/FAQ.md)
    - [【理论篇】OCR通用21个问题](./doc/doc_ch/FAQ.md)
    - [【实战篇】PaddleOCR实战53个问题](./doc/doc_ch/FAQ.md)
- [技术交流群](#欢迎加入PaddleOCR技术交流群)
- [参考文献](./doc/doc_ch/reference.md)
- [许可证书](#许可证书)
- [贡献代码](#贡献代码)

<a name="算法介绍"></a>
## 算法介绍
<a name="文本检测算法"></a>
### 1.文本检测算法

PaddleOCR开源的文本检测算法列表:
T
tink2123 已提交
94
- [x]  EAST([paper](https://arxiv.org/abs/1704.03155))
T
fix url  
tink2123 已提交
95
- [x]  DB([paper](https://arxiv.org/abs/1911.08947))
G
grasswolfs 已提交
96
- [x]  SAST([paper](https://arxiv.org/abs/1908.05498))(百度自研)
T
tink2123 已提交
97

G
grasswolfs 已提交
98
在ICDAR2015文本检测公开数据集上,算法效果如下:
T
tink2123 已提交
99

G
grasswolfs 已提交
100
|模型|骨干网络|precision|recall|Hmean|下载链接|
101
|-|-|-|-|-|-|
G
grasswolfs 已提交
102 103 104 105 106
|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
|DB|MobileNetV3|75.92%|73.18%|74.53%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
|SAST|ResNet50_vd|92.18%|82.96%|87.33%|[下载链接](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_icdar2015.tar)|
L
LDOUBLEV 已提交
107

G
grasswolfs 已提交
108
在Total-text文本检测公开数据集上,算法效果如下:
L
licx 已提交
109

G
grasswolfs 已提交
110
|模型|骨干网络|precision|recall|Hmean|下载链接|
L
licx 已提交
111
|-|-|-|-|-|-|
G
grasswolfs 已提交
112 113 114 115
|SAST|ResNet50_vd|88.74%|79.80%|84.03%|[下载链接](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_total_text.tar)|

**说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载:[百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi)

L
licx 已提交
116

G
grasswolfs 已提交
117
使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/datasets.md#1icdar2019-lsvt)街景数据集共3w张数据,训练中文检测模型的相关配置和预训练文件如下:
118

G
grasswolfs 已提交
119
|模型|骨干网络|配置文件|预训练模型|
T
tink2123 已提交
120
|-|-|-|-|
G
grasswolfs 已提交
121 122
|超轻量中文模型|MobileNetV3|det_mv3_db.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|
|通用中文OCR模型|ResNet50_vd|det_r50_vd_db.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|
T
tink2123 已提交
123

G
grasswolfs 已提交
124
* 注: 上述DB模型的训练和评估,需设置后处理参数box_thresh=0.6,unclip_ratio=1.5,使用不同数据集、不同模型训练,可调整这两个参数进行优化
T
tink2123 已提交
125

G
grasswolfs 已提交
126
PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训练/评估中的文本检测部分](./doc/doc_ch/detection.md)
T
tink2123 已提交
127

G
grasswolfs 已提交
128 129
<a name="文本识别算法"></a>
### 2.文本识别算法
T
tink2123 已提交
130

G
grasswolfs 已提交
131
PaddleOCR开源的文本识别算法列表:
T
tink2123 已提交
132 133 134 135
- [x]  CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x]  Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x]  STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x]  RARE([paper](https://arxiv.org/abs/1603.03915v1))
G
grasswolfs 已提交
136
- [x]  SRN([paper](https://arxiv.org/abs/2003.12294))(百度自研)
T
tink2123 已提交
137

G
grasswolfs 已提交
138
参考[DTRB](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
T
tink2123 已提交
139

G
grasswolfs 已提交
140
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
D
dyning 已提交
141
|-|-|-|-|-|
G
grasswolfs 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|
|SRN|Resnet50_vd_fpn|88.33%|rec_r50fpn_vd_none_srn|[下载链接](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)|

**说明:** SRN模型使用了数据扰动方法对上述提到对两个训练集进行增广,增广后的数据可以在[百度网盘](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA)上下载,提取码: y3ry。
原始论文使用两阶段训练平均精度为89.74%,PaddleOCR中使用one-stage训练,平均精度为88.33%。两种预训练权重均在[下载链接](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)中。

使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/datasets.md#1icdar2019-lsvt)街景数据集根据真值将图crop出来30w数据,进行位置校准。此外基于LSVT语料生成500w合成数据训练中文模型,相关配置和预训练文件如下:  

|模型|骨干网络|配置文件|预训练模型|
T
tink2123 已提交
158
|-|-|-|-|
G
grasswolfs 已提交
159 160
|超轻量中文模型|MobileNetV3|rec_chinese_lite_train.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|
|通用中文OCR模型|Resnet34_vd|rec_chinese_common_train.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|
T
tink2123 已提交
161

G
grasswolfs 已提交
162
PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./doc/doc_ch/recognition.md)
T
tink2123 已提交
163

G
grasswolfs 已提交
164
## 效果展示
D
dyning 已提交
165

G
grasswolfs 已提交
166 167
<a name="超轻量级中文OCR效果展示"></a>
### 1.超轻量级中文OCR效果展示  [more](./doc/doc_ch/visualization.md)
T
tink2123 已提交
168

D
dyning 已提交
169
<div align="center">
D
dyning 已提交
170
    <img src="doc/imgs_results/1.jpg" width="800">
D
dyning 已提交
171
</div>
T
tink2123 已提交
172

G
grasswolfs 已提交
173 174
<a name="通用中文OCR效果展示"></a>
### 2.通用中文OCR效果展示  [more](./doc/doc_ch/visualization.md)
D
dyning 已提交
175 176 177 178

<div align="center">
    <img src="doc/imgs_results/chinese_db_crnn_server/11.jpg" width="800">
</div>
179

G
grasswolfs 已提交
180 181
<a name="支持空格的中文OCR效果展示"></a>
### 3.支持空格的中文OCR效果展示  [more](./doc/doc_ch/visualization.md)
T
tink2123 已提交
182

D
dyning 已提交
183 184 185
<div align="center">
    <img src="doc/imgs_results/chinese_db_crnn_server/en_paper.jpg" width="800">
</div>
T
tink2123 已提交
186

G
grasswolfs 已提交
187 188 189
<a name="欢迎加入PaddleOCR技术交流群"></a>
## 欢迎加入PaddleOCR技术交流群
请扫描下面二维码,完成问卷填写,获取加群二维码和OCR方向的炼丹秘籍
D
dyning 已提交
190

D
dyning 已提交
191
<div align="center">
G
grasswolfs 已提交
192
<img src="./doc/joinus.png"  width = "200" height = "200" />
D
dyning 已提交
193
</div>
M
MissPenguin 已提交
194

G
grasswolfs 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
<a name="许可证书"></a>
## 许可证书
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>许可认证。

<a name="贡献代码"></a>
## 贡献代码
我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。

- 非常感谢 [Khanh Tran](https://github.com/xxxpsyduck)[Karl Horky](https://github.com/karlhorky) 贡献修改英文文档
- 非常感谢 [zhangxin](https://github.com/ZhangXinNan)([Blog](https://blog.csdn.net/sdlypyzq)) 贡献新的可视化方式、添加.gitgnore、处理手动设置PYTHONPATH环境变量的问题
- 非常感谢 [lyl120117](https://github.com/lyl120117) 贡献打印网络结构的代码
- 非常感谢 [xiangyubo](https://github.com/xiangyubo) 贡献手写中文OCR数据集
- 非常感谢 [authorfu](https://github.com/authorfu) 贡献Android和[xiadeye](https://github.com/xiadeye) 贡献IOS的demo代码
- 非常感谢 [BeyondYourself](https://github.com/BeyondYourself) 给PaddleOCR提了很多非常棒的建议,并简化了PaddleOCR的部分代码风格。
- 非常感谢 [tangmq](https://gitee.com/tangmq) 给PaddleOCR增加Docker化部署服务,支持快速发布可调用的Restful API服务。