recognition_en.md 21.9 KB
Newer Older
1
# Text Recognition
K
Khanh Tran 已提交
2

3
- [1. Data Preparation](#DATA_PREPARATION)
4
  * [1.1 Custom Dataset](#Custom_Dataset)
A
andyjpaddle 已提交
5 6 7 8
  * [1.2 Dataset Download](#Dataset_download)
  * [1.3 Dictionary](#Dictionary)  
  * [1.4 Add Space Category](#Add_space_category)
  * [1.5 Data Augmentation](#Data_Augmentation)
9
- [2. Training](#TRAINING)
A
andyjpaddle 已提交
10 11 12 13 14 15 16 17
  * [2.1 Start Training](#21-start-training)
  * [2.2 Load Trained Model and Continue Training](#22-load-trained-model-and-continue-training)
  * [2.3 Training with New Backbone](#23-training-with-new-backbone)
  * [2.4 Mixed Precision Training](#24-amp-training)
  * [2.5 Distributed Training](#25-distributed-training)
  * [2.6 Training with knowledge distillation](#kd)
  * [2.7 Multi-language Training](#Multi_language)
  * [2.8 Training on other platform(Windows/macOS/Linux DCU)](#28)
18
  * [2.9 Fine-tuning](#29)
A
andyjpaddle 已提交
19 20 21 22 23
- [3. Evaluation and Test](#3-evaluation-and-test)
  * [3.1 Evaluation](#31-evaluation)
  * [3.2 Test](#32-test)
- [4. Inference](#4-inference)
- [5. FAQ](#5-faq)
W
WenmuZhou 已提交
24 25

<a name="DATA_PREPARATION"></a>
26
## 1. Data Preparation
K
Khanh Tran 已提交
27

文幕地方's avatar
文幕地方 已提交
28
### 1.1 DataSet Preparation
K
Khanh Tran 已提交
29

文幕地方's avatar
文幕地方 已提交
30
To prepare datasets, refer to [ocr_datasets](./dataset/ocr_datasets.md) .
W
WenmuZhou 已提交
31 32 33 34 35 36 37 38 39 40

PaddleOCR provides label files for training the icdar2015 dataset, which can be downloaded in the following ways:

```
# Training set label
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_train.txt
# Test Set Label
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_test.txt
```

T
tink2123 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
PaddleOCR also provides a data format conversion script, which can convert ICDAR official website label to a data format
supported by PaddleOCR. The data conversion tool is in `ppocr/utils/gen_label.py`, here is the training set as an example:

```
# convert the official gt to rec_gt_label.txt
python gen_label.py --mode="rec" --input_path="{path/of/origin/label}" --output_label="rec_gt_label.txt"
```

The data format is as follows, (a) is the original picture, (b) is the Ground Truth text file corresponding to each picture:

![](../datasets/icdar_rec.png)


- Multilingual dataset

The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded using the following two methods.
* [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA) ,Extraction code:frgi.
* [Google drive](https://drive.google.com/file/d/18cSWX7wXSy4G0tbKJ0d9PuIaiwRLHpjA/view)


W
WenmuZhou 已提交
61
<a name="Dictionary"></a>
文幕地方's avatar
文幕地方 已提交
62
### 1.2 Dictionary
K
Khanh Tran 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

Finally, a dictionary ({word_dict_name}.txt) needs to be provided so that when the model is trained, all the characters that appear can be mapped to the dictionary index.

Therefore, the dictionary needs to contain all the characters that you want to be recognized correctly. {word_dict_name}.txt needs to be written in the following format and saved in the `utf-8` encoding format:

```
l
d
a
d
r
n
```

In `word_dict.txt`, there is a single word in each line, which maps characters and numeric indexes together, e.g "and" will be mapped to [2 5 1]

W
WenmuZhou 已提交
79 80
PaddleOCR has built-in dictionaries, which can be used on demand.

K
Khanh Tran 已提交
81 82
`ppocr/utils/ppocr_keys_v1.txt` is a Chinese dictionary with 6623 characters.

W
WenmuZhou 已提交
83 84 85 86
`ppocr/utils/ic15_dict.txt` is an English dictionary with 63 characters

`ppocr/utils/dict/french_dict.txt` is a French dictionary with 118 characters

87
`ppocr/utils/dict/japan_dict.txt` is a Japanese dictionary with 4399 characters
W
WenmuZhou 已提交
88

T
tink2123 已提交
89
`ppocr/utils/dict/korean_dict.txt` is a Korean dictionary with 3636 characters
W
WenmuZhou 已提交
90

T
tink2123 已提交
91 92
`ppocr/utils/dict/german_dict.txt` is a German dictionary with 131 characters

T
tink2123 已提交
93
`ppocr/utils/en_dict.txt` is a English dictionary with 96 characters
W
WenmuZhou 已提交
94

X
xiaoting 已提交
95

W
WenmuZhou 已提交
96
The current multi-language model is still in the demo stage and will continue to optimize the model and add languages. **You are very welcome to provide us with dictionaries and fonts in other languages**,
littletomatodonkey's avatar
fix doc  
littletomatodonkey 已提交
97
If you like, you can submit the dictionary file to [dict](../../ppocr/utils/dict) and we will thank you in the Repo.
K
Khanh Tran 已提交
98 99


T
tink2123 已提交
100
To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` .
K
Khanh Tran 已提交
101

T
tink2123 已提交
102 103 104 105
- Custom dictionary

If you need to customize dic file, please add character_dict_path field in configs/rec/rec_icdar15_train.yml to point to your dictionary path. And set character_type to ch.

W
WenmuZhou 已提交
106
<a name="Add_space_category"></a>
107
### 1.4 Add Space Category
T
tink2123 已提交
108

109
If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `True`.
T
tink2123 已提交
110

T
tink2123 已提交
111
<a name="Data_Augmentation"></a>
A
andyjpaddle 已提交
112
### 1.5 Data Augmentation
T
tink2123 已提交
113 114 115 116 117 118 119

PaddleOCR provides a variety of data augmentation methods. All the augmentation methods are enabled by default.

The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse, TIA augmentation.

Each disturbance method is selected with a 40% probability during the training process. For specific code implementation, please refer to: [rec_img_aug.py](../../ppocr/data/imaug/rec_img_aug.py)

A
andyjpaddle 已提交
120 121
<a name="TRAINING"></a>
## 2.Training
T
tink2123 已提交
122

K
Khanh Tran 已提交
123 124
PaddleOCR provides training scripts, evaluation scripts, and prediction scripts. In this section, the CRNN recognition model will be used as an example:

A
andyjpaddle 已提交
125 126 127
<a name="21-start-training"></a>
### 2.1 Start Training

K
Khanh Tran 已提交
128 129 130 131
First download the pretrain model, you can download the trained model to finetune on the icdar2015 data:

```
cd PaddleOCR/
T
tink2123 已提交
132 133
# Download the pre-trained model of en_PP-OCRv3
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_train.tar
K
Khanh Tran 已提交
134 135
# Decompress model parameters
cd pretrain_models
T
tink2123 已提交
136
tar -xf en_PP-OCRv3_rec_train.tar && rm -rf en_PP-OCRv3_rec_train.tar
K
Khanh Tran 已提交
137 138 139 140 141
```

Start training:

```
T
tink2123 已提交
142
# GPU training Support single card and multi-card training
T
tink2123 已提交
143
# Training icdar15 English data and The training log will be automatically saved as train.log under "{save_model_dir}"
T
tink2123 已提交
144 145

#specify the single card training(Long training time, not recommended)
T
tink2123 已提交
146 147
python3 tools/train.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model=en_PP-OCRv3_rec_train/best_accuracy

T
tink2123 已提交
148
#specify the card number through --gpus
T
tink2123 已提交
149
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model=en_PP-OCRv3_rec_train/best_accuracy
K
Khanh Tran 已提交
150
```
T
tink2123 已提交
151 152


K
Khanh Tran 已提交
153 154 155 156
PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/rec/rec_icdar15_train.yml` to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under `output/rec_CRNN/best_accuracy` during the evaluation process.

If the evaluation set is large, the test will be time-consuming. It is recommended to reduce the number of evaluations, or evaluate after training.

T
tink2123 已提交
157
* Tip: You can use the `-c` parameter to select multiple model configurations under the `configs/rec/` path for training. The recognition algorithms supported at [rec_algorithm](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_en/algorithm_overview.md):
K
Khanh Tran 已提交
158 159


W
WenmuZhou 已提交
160
For training Chinese data, it is recommended to use
T
tink2123 已提交
161
[ch_PP-OCRv3_rec_distillation.yml](../../configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
T
tink2123 已提交
162

T
tink2123 已提交
163
Take `ch_PP-OCRv3_rec_distillation.yml` as an example:
K
Khanh Tran 已提交
164 165 166
```
Global:
  ...
167 168
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
  character_dict_path: ppocr/utils/ppocr_keys_v1.txt
K
Khanh Tran 已提交
169 170
  # Modify character type
  ...
171
  # Whether to recognize spaces
172
  use_space_char: True
K
Khanh Tran 已提交
173

174 175 176 177

Optimizer:
  ...
  # Add learning rate decay strategy
178 179 180 181 182 183 184 185 186
  lr:
    name: Cosine
    learning_rate: 0.001
  ...

...

Train:
  dataset:
M
MissPenguin 已提交
187
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
188 189 190 191 192 193 194 195 196
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data/
    # Path of train list
    label_file_list: ["./train_data/train_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # Modify image_shape to fit long text
T
tink2123 已提交
197
          image_shape: [3, 48, 320]
198 199 200 201 202 203 204 205 206
      ...
  loader:
    ...
    # Train batch_size for Single card
    batch_size_per_card: 256
    ...

Eval:
  dataset:
M
MissPenguin 已提交
207
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
208 209 210 211 212 213 214 215 216
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data
    # Path of eval list
    label_file_list: ["./train_data/val_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # Modify image_shape to fit long text
T
tink2123 已提交
217
          image_shape: [3, 48, 320]
218 219 220 221 222
      ...
  loader:
    # Eval batch_size for Single card
    batch_size_per_card: 256
    ...
K
Khanh Tran 已提交
223 224 225
```
**Note that the configuration file for prediction/evaluation must be consistent with the training.**

A
andyjpaddle 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
<a name="22-load-trained-model-and-continue-training"></a>
### 2.2 Load Trained Model and Continue Training

If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.

For example:
```shell
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints=./your/trained/model
```

**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrained_model`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrained_model` will be loaded.

<a name="23-training-with-new-backbone"></a>
### 2.3 Training with New Backbone

The network part completes the construction of the network, and PaddleOCR divides the network into four parts, which are under [ppocr/modeling](../../ppocr/modeling). The data entering the network will pass through these four parts in sequence(transforms->backbones->
necks->heads).

```bash
├── architectures # Code for building network
├── transforms    # Image Transformation Module
├── backbones     # Feature extraction module
├── necks         # Feature enhancement module
└── heads         # Output module
```

If the Backbone to be replaced has a corresponding implementation in PaddleOCR, you can directly modify the parameters in the `Backbone` part of the configuration yml file.

However, if you want to use a new Backbone, an example of replacing the backbones is as follows:

1. Create a new file under the [ppocr/modeling/backbones](../../ppocr/modeling/backbones) folder, such as my_backbone.py.
2. Add code in the my_backbone.py file, the sample code is as follows:

```python
import paddle
import paddle.nn as nn
import paddle.nn.functional as F


class MyBackbone(nn.Layer):
    def __init__(self, *args, **kwargs):
        super(MyBackbone, self).__init__()
        # your init code
        self.conv = nn.xxxx

    def forward(self, inputs):
        # your network forward
        y = self.conv(inputs)
        return y
```

3. Import the added module in the [ppocr/modeling/backbones/\__init\__.py](../../ppocr/modeling/backbones/__init__.py) file.

After adding the four-part modules of the network, you only need to configure them in the configuration file to use, such as:

```yaml
  Backbone:
    name: MyBackbone
    args1: args1
```

**NOTE**: More details about replace Backbone and other mudule can be found in [doc](add_new_algorithm_en.md).

<a name="24-amp-training"></a>
### 2.4 Mixed Precision Training

If you want to speed up your training further, you can use [Auto Mixed Precision Training](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/amp_cn.html), taking a single machine and a single gpu as an example, the commands are as follows:

```shell
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml \
     -o Global.pretrained_model=./pretrain_models/rec_mv3_none_bilstm_ctc_v2.0_train \
     Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True
 ```

<a name="25-distributed-training"></a>
### 2.5 Distributed Training

During multi-machine multi-gpu training, use the `--ips` parameter to set the used machine IP address, and the `--gpus` parameter to set the used GPU ID:

```bash
python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml \
     -o Global.pretrained_model=./pretrain_models/rec_mv3_none_bilstm_ctc_v2.0_train
```

littletomatodonkey's avatar
littletomatodonkey 已提交
310
**Note:** (1) When using multi-machine and multi-gpu training, you need to replace the ips value in the above command with the address of your machine, and the machines need to be able to ping each other. (2) Training needs to be launched separately on multiple machines. The command to view the ip address of the machine is `ifconfig`. (3) For more details about the distributed training speedup ratio, please refer to [Distributed Training Tutorial](./distributed_training_en.md).
A
andyjpaddle 已提交
311 312 313 314 315 316

<a name="kd"></a>
### 2.6 Training with Knowledge Distillation

Knowledge distillation is supported in PaddleOCR for text recognition training process. For more details, please refer to [doc](./knowledge_distillation_en.md).

W
WenmuZhou 已提交
317
<a name="Multi_language"></a>
A
andyjpaddle 已提交
318
### 2.7 Multi-language Training
T
tink2123 已提交
319 320 321

Currently, the multi-language algorithms supported by PaddleOCR are:

T
tink2123 已提交
322 323 324 325 326 327 328 329 330 331 332 333
| Configuration file |  Algorithm name |   backbone |   trans   |   seq      |     pred     |  language |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   | :-----:  |
| rec_chinese_cht_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | chinese traditional  |
| rec_en_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | English(Case sensitive)   |
| rec_french_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | French |  
| rec_ger_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | German   |
| rec_japan_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Japanese |
| rec_korean_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Korean  |
| rec_latin_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Latin  |
| rec_arabic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | arabic |
| rec_cyrillic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | cyrillic   |
| rec_devanagari_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | devanagari  |
T
tink2123 已提交
334

T
tink2123 已提交
335
For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations)
W
WenmuZhou 已提交
336 337 338 339 340 341 342 343 344


If you want to finetune on the basis of the existing model effect, please refer to the following instructions to modify the configuration file:

Take `rec_french_lite_train` as an example:

```
Global:
  ...
345
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
W
WenmuZhou 已提交
346 347
  character_dict_path: ./ppocr/utils/dict/french_dict.txt
  ...
348
  # Whether to recognize spaces
349
  use_space_char: True
350

W
WenmuZhou 已提交
351
...
352 353 354

Train:
  dataset:
M
MissPenguin 已提交
355
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
356 357 358 359 360 361 362 363 364
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data/
    # Path of train list
    label_file_list: ["./train_data/french_train.txt"]
    ...

Eval:
  dataset:
M
MissPenguin 已提交
365
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
366 367 368 369 370 371
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data
    # Path of eval list
    label_file_list: ["./train_data/french_val.txt"]
    ...
W
WenmuZhou 已提交
372
```
K
Khanh Tran 已提交
373

A
andyjpaddle 已提交
374
<a name="28"></a>
A
andyjpaddle 已提交
375
### 2.8 Training on other platform(Windows/macOS/Linux DCU)
376

A
andyjpaddle 已提交
377 378 379 380
- Windows GPU/CPU
The Windows platform is slightly different from the Linux platform:
Windows platform only supports `single gpu` training and inference, specify GPU for training `set CUDA_VISIBLE_DEVICES=0`
On the Windows platform, DataLoader only supports single-process mode, so you need to set `num_workers` to 0;
381

A
andyjpaddle 已提交
382 383
- macOS
GPU mode is not supported, you need to set `use_gpu` to False in the configuration file, and the rest of the training evaluation prediction commands are exactly the same as Linux GPU.
384

A
andyjpaddle 已提交
385 386
- Linux DCU
Running on a DCU device requires setting the environment variable `export HIP_VISIBLE_DEVICES=0,1,2,3`, and the rest of the training and evaluation prediction commands are exactly the same as the Linux GPU.
387

388 389 390 391 392
<a name="29"></a>
## 2.9 Fine-tuning

In actual use, it is recommended to load the official pre-trained model and fine-tune it in your own data set. For the fine-tuning method of the recognition model, please refer to: [Model Fine-tuning Tutorial](./finetune_en.md).

A
andyjpaddle 已提交
393 394
<a name="3-evaluation-and-test"></a>
## 3. Evaluation and Test
395

A
andyjpaddle 已提交
396 397 398
<a name="31-evaluation"></a>
### 3.1 Evaluation

399
The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file. The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml` file.
K
Khanh Tran 已提交
400 401 402 403


```
# GPU evaluation, Global.checkpoints is the weight to be tested
T
tink2123 已提交
404
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.checkpoints={path/to/weights}/best_accuracy
K
Khanh Tran 已提交
405 406
```

A
andyjpaddle 已提交
407 408
<a name="32-test"></a>
### 3.2 Test
K
Khanh Tran 已提交
409 410 411 412


Using the model trained by paddleocr, you can quickly get prediction through the following script.

T
tink2123 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
The default prediction picture is stored in `infer_img`, and the trained weight is specified via `-o Global.checkpoints`:


According to the `save_model_dir` and `save_epoch_step` fields set in the configuration file, the following parameters will be saved:

```
output/rec/
├── best_accuracy.pdopt  
├── best_accuracy.pdparams  
├── best_accuracy.states  
├── config.yml  
├── iter_epoch_3.pdopt  
├── iter_epoch_3.pdparams  
├── iter_epoch_3.states  
├── latest.pdopt  
├── latest.pdparams  
├── latest.states  
└── train.log
```

Among them, best_accuracy.* is the best model on the evaluation set; iter_epoch_x.* is the model saved at intervals of `save_epoch_step`; latest.* is the model of the last epoch.
K
Khanh Tran 已提交
434 435 436

```
# Predict English results
T
tink2123 已提交
437
python3 tools/infer_rec.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model={path/to/weights}/best_accuracy  Global.infer_img=doc/imgs_words/en/word_1.png
K
Khanh Tran 已提交
438 439
```

T
tink2123 已提交
440

K
Khanh Tran 已提交
441 442
Input image:

443
![](../imgs_words/en/word_1.png)
K
Khanh Tran 已提交
444 445 446 447 448

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/en/word_1.png
T
tink2123 已提交
449
        result: ('joint', 0.9998967)
K
Khanh Tran 已提交
450 451
```

452
The configuration file used for prediction must be consistent with the training. For example, you completed the training of the Chinese model with `python3 tools/train.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml`, you can use the following command to predict the Chinese model:
K
Khanh Tran 已提交
453 454 455

```
# Predict Chinese results
T
tink2123 已提交
456
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/ch/word_1.jpg
K
Khanh Tran 已提交
457 458 459 460
```

Input image:

461
![](../imgs_words/ch/word_1.jpg)
K
Khanh Tran 已提交
462 463 464 465 466

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/ch/word_1.jpg
T
tink2123 已提交
467
        result: ('韩国小馆', 0.997218)
K
Khanh Tran 已提交
468
```
469

A
andyjpaddle 已提交
470 471 472 473
<a name="4-inference"></a>
## 4. Inference

The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.
474

A
andyjpaddle 已提交
475
The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.
476

A
andyjpaddle 已提交
477
Compared with the checkpoints model, the inference model will additionally save the structural information of the model. Therefore, it is easier to deploy because the model structure and model parameters are already solidified in the inference model file, and is suitable for integration with actual systems.
478 479 480 481 482 483 484 485 486

The recognition model is converted to the inference model in the same way as the detection, as follows:

```
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.save_inference_dir Set the address where the converted model will be saved.

T
tink2123 已提交
487
python3 tools/export_model.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model=en_PP-OCRv3_rec_train/best_accuracy  Global.save_inference_dir=./inference/en_PP-OCRv3_rec/
488 489 490 491 492 493 494
```

If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.

After the conversion is successful, there are three files in the model save directory:

```
495

T
tink2123 已提交
496
inference/en_PP-OCRv3_rec/
497 498 499 500 501 502 503
    ├── inference.pdiparams         # The parameter file of recognition inference model
    ├── inference.pdiparams.info    # The parameter information of recognition inference model, which can be ignored
    └── inference.pdmodel           # The program file of recognition model
```

- Text recognition model Inference using custom characters dictionary

文幕地方's avatar
文幕地方 已提交
504
  If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`
505 506

  ```
文幕地方's avatar
文幕地方 已提交
507
  python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_dict_path="your text dict path"
508
  ```
A
andyjpaddle 已提交
509 510 511 512 513 514 515

<a name="5-faq"></a>
## 5. FAQ

Q1: After the training model is transferred to the inference model, the prediction effect is inconsistent?

**A**: There are many such problems, and the problems are mostly caused by inconsistent preprocessing and postprocessing parameters when the trained model predicts and the preprocessing and postprocessing parameters when the inference model predicts. You can compare whether there are differences in preprocessing, postprocessing, and prediction in the configuration files used for training.