web_service_rec.py 3.1 KB
Newer Older
T
tink2123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_server.web_service import WebService, Op

import logging
import numpy as np
import cv2
import base64
# from paddle_serving_app.reader import OCRReader
T
tink2123 已提交
21
from ocr_reader import OCRReader, DetResizeForTest, ArgsParser
T
tink2123 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose

_LOGGER = logging.getLogger()


class RecOp(Op):
    def init_op(self):
        self.ocr_reader = OCRReader(
            char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt")

    def preprocess(self, input_dicts, data_id, log_id):
        (_, input_dict), = input_dicts.items()
        raw_im = base64.b64decode(input_dict["image"].encode('utf8'))
        data = np.fromstring(raw_im, np.uint8)
        im = cv2.imdecode(data, cv2.IMREAD_COLOR)
        feed_list = []
        max_wh_ratio = 0
        ## Many mini-batchs, the type of feed_data is list.
        max_batch_size = 6  # len(dt_boxes)

        # If max_batch_size is 0, skipping predict stage
        if max_batch_size == 0:
            return {}, True, None, ""
        boxes_size = max_batch_size
        rem = boxes_size % max_batch_size

        h, w = im.shape[0:2]
        wh_ratio = w * 1.0 / h
        max_wh_ratio = max(max_wh_ratio, wh_ratio)
        _, w, h = self.ocr_reader.resize_norm_img(im, max_wh_ratio).shape
        norm_img = self.ocr_reader.resize_norm_img(im, max_batch_size)
        norm_img = norm_img[np.newaxis, :]
        feed = {"x": norm_img.copy()}
        feed_list.append(feed)
        return feed_list, False, None, ""

littletomatodonkey's avatar
littletomatodonkey 已提交
59
    def postprocess(self, input_dicts, fetch_data, data_id, log_id):
T
tink2123 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
        res_list = []
        if isinstance(fetch_data, dict):
            if len(fetch_data) > 0:
                rec_batch_res = self.ocr_reader.postprocess(
                    fetch_data, with_score=True)
                for res in rec_batch_res:
                    res_list.append(res[0])
        elif isinstance(fetch_data, list):
            for one_batch in fetch_data:
                one_batch_res = self.ocr_reader.postprocess(
                    one_batch, with_score=True)
                for res in one_batch_res:
                    res_list.append(res[0])

        res = {"res": str(res_list)}
        return res, None, ""


class OcrService(WebService):
    def get_pipeline_response(self, read_op):
        rec_op = RecOp(name="rec", input_ops=[read_op])
        return rec_op


uci_service = OcrService(name="ocr")
T
tink2123 已提交
85 86
FLAGS = ArgsParser().parse_args()
uci_service.prepare_pipeline_config(yml_dict=FLAGS.conf_dict)
T
tink2123 已提交
87
uci_service.run_service()