model.py 36.8 KB
Newer Older
T
tink2123 已提交
1 2 3 4 5 6
from functools import partial
import numpy as np

import paddle.fluid as fluid
import paddle.fluid.layers as layers

T
tink2123 已提交
7 8 9
# Set seed for CE
dropout_seed = None

T
tink2123 已提交
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

def wrap_layer_with_block(layer, block_idx):
    """
    Make layer define support indicating block, by which we can add layers
    to other blocks within current block. This will make it easy to define
    cache among while loop.
    """

    class BlockGuard(object):
        """
        BlockGuard class.

        BlockGuard class is used to switch to the given block in a program by
        using the Python `with` keyword.
        """

        def __init__(self, block_idx=None, main_program=None):
            self.main_program = fluid.default_main_program(
            ) if main_program is None else main_program
            self.old_block_idx = self.main_program.current_block().idx
            self.new_block_idx = block_idx

        def __enter__(self):
            self.main_program.current_block_idx = self.new_block_idx

        def __exit__(self, exc_type, exc_val, exc_tb):
            self.main_program.current_block_idx = self.old_block_idx
            if exc_type is not None:
                return False  # re-raise exception
            return True

    def layer_wrapper(*args, **kwargs):
        with BlockGuard(block_idx):
            return layer(*args, **kwargs)

    return layer_wrapper


def position_encoding_init(n_position, d_pos_vec):
    """
    Generate the initial values for the sinusoid position encoding table.
    """
    channels = d_pos_vec
    position = np.arange(n_position)
    num_timescales = channels // 2
    log_timescale_increment = (np.log(float(1e4) / float(1)) /
                               (num_timescales - 1))
    inv_timescales = np.exp(np.arange(
        num_timescales)) * -log_timescale_increment
    scaled_time = np.expand_dims(position, 1) * np.expand_dims(inv_timescales,
                                                               0)
    signal = np.concatenate([np.sin(scaled_time), np.cos(scaled_time)], axis=1)
    signal = np.pad(signal, [[0, 0], [0, np.mod(channels, 2)]], 'constant')
    position_enc = signal
    return position_enc.astype("float32")


def multi_head_attention(queries,
                         keys,
                         values,
                         attn_bias,
                         d_key,
                         d_value,
                         d_model,
                         n_head=1,
                         dropout_rate=0.,
                         cache=None,
                         gather_idx=None,
                         static_kv=False):
    """
    Multi-Head Attention. Note that attn_bias is added to the logit before
    computing softmax activiation to mask certain selected positions so that
    they will not considered in attention weights.
    """
    keys = queries if keys is None else keys
    values = keys if values is None else values

    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
            "Inputs: quries, keys and values should all be 3-D tensors.")

    def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
        """
        Add linear projection to queries, keys, and values.
        """
        q = layers.fc(input=queries,
                      size=d_key * n_head,
                      bias_attr=False,
                      num_flatten_dims=2)
        # For encoder-decoder attention in inference, insert the ops and vars
        # into global block to use as cache among beam search.
        fc_layer = wrap_layer_with_block(
            layers.fc, fluid.default_main_program().current_block()
            .parent_idx) if cache is not None and static_kv else layers.fc
        k = fc_layer(
            input=keys,
            size=d_key * n_head,
            bias_attr=False,
            num_flatten_dims=2)
        v = fc_layer(
            input=values,
            size=d_value * n_head,
            bias_attr=False,
            num_flatten_dims=2)
        return q, k, v

    def __split_heads_qkv(queries, keys, values, n_head, d_key, d_value):
        """
T
tink2123 已提交
118
        Reshape input tensors at the last dimension to split multi-heads
T
tink2123 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        and then transpose. Specifically, transform the input tensor with shape
        [bs, max_sequence_length, n_head * hidden_dim] to the output tensor
        with shape [bs, n_head, max_sequence_length, hidden_dim].
        """
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
        reshaped_q = layers.reshape(
            x=queries, shape=[0, 0, n_head, d_key], inplace=True)
        # permuate the dimensions into:
        # [batch_size, n_head, max_sequence_len, hidden_size_per_head]
        q = layers.transpose(x=reshaped_q, perm=[0, 2, 1, 3])
        # For encoder-decoder attention in inference, insert the ops and vars
        # into global block to use as cache among beam search.
        reshape_layer = wrap_layer_with_block(
            layers.reshape,
            fluid.default_main_program().current_block()
            .parent_idx) if cache is not None and static_kv else layers.reshape
        transpose_layer = wrap_layer_with_block(
            layers.transpose,
            fluid.default_main_program().current_block().
            parent_idx) if cache is not None and static_kv else layers.transpose
        reshaped_k = reshape_layer(
            x=keys, shape=[0, 0, n_head, d_key], inplace=True)
        k = transpose_layer(x=reshaped_k, perm=[0, 2, 1, 3])
        reshaped_v = reshape_layer(
            x=values, shape=[0, 0, n_head, d_value], inplace=True)
        v = transpose_layer(x=reshaped_v, perm=[0, 2, 1, 3])

        if cache is not None:  # only for faster inference
            if static_kv:  # For encoder-decoder attention in inference
                cache_k, cache_v = cache["static_k"], cache["static_v"]
                # To init the static_k and static_v in cache.
                # Maybe we can use condition_op(if_else) to do these at the first
                # step in while loop to replace these, however it might be less
                # efficient.
                static_cache_init = wrap_layer_with_block(
                    layers.assign,
                    fluid.default_main_program().current_block().parent_idx)
                static_cache_init(k, cache_k)
                static_cache_init(v, cache_v)
            else:  # For decoder self-attention in inference
                cache_k, cache_v = cache["k"], cache["v"]
            # gather cell states corresponding to selected parent
            select_k = layers.gather(cache_k, index=gather_idx)
            select_v = layers.gather(cache_v, index=gather_idx)
            if not static_kv:
                # For self attention in inference, use cache and concat time steps.
                select_k = layers.concat([select_k, k], axis=2)
                select_v = layers.concat([select_v, v], axis=2)
            # update cell states(caches) cached in global block
            layers.assign(select_k, cache_k)
            layers.assign(select_v, cache_v)
            return q, select_k, select_v
        return q, k, v

    def __combine_heads(x):
        """
        Transpose and then reshape the last two dimensions of inpunt tensor x
        so that it becomes one dimension, which is reverse to __split_heads.
        """
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
        return layers.reshape(
            x=trans_x,
            shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]],
            inplace=True)

    def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
        """
        Scaled Dot-Product Attention
        """
        # print(q)
        # print(k)

        product = layers.matmul(x=q, y=k, transpose_y=True, alpha=d_key**-0.5)
        if attn_bias:
            product += attn_bias
        weights = layers.softmax(product)
        if dropout_rate:
            weights = layers.dropout(
                weights,
                dropout_prob=dropout_rate,
                seed=dropout_seed,
                is_test=False)
        out = layers.matmul(weights, v)
        return out

    q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
    q, k, v = __split_heads_qkv(q, k, v, n_head, d_key, d_value)

    ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_model,
                                                  dropout_rate)

    out = __combine_heads(ctx_multiheads)

    # Project back to the model size.
    proj_out = layers.fc(input=out,
                         size=d_model,
                         bias_attr=False,
                         num_flatten_dims=2)
    return proj_out


def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate):
    """
    Position-wise Feed-Forward Networks.
    This module consists of two linear transformations with a ReLU activation
    in between, which is applied to each position separately and identically.
    """
    hidden = layers.fc(input=x,
                       size=d_inner_hid,
                       num_flatten_dims=2,
                       act="relu")
    if dropout_rate:
        hidden = layers.dropout(
            hidden, dropout_prob=dropout_rate, seed=dropout_seed, is_test=False)
    out = layers.fc(input=hidden, size=d_hid, num_flatten_dims=2)
    return out


def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.):
    """
    Add residual connection, layer normalization and droput to the out tensor
    optionally according to the value of process_cmd.
    This will be used before or after multi-head attention and position-wise
    feed-forward networks.
    """
    for cmd in process_cmd:
        if cmd == "a":  # add residual connection
            out = out + prev_out if prev_out else out
        elif cmd == "n":  # add layer normalization
            out = layers.layer_norm(
                out,
                begin_norm_axis=len(out.shape) - 1,
                param_attr=fluid.initializer.Constant(1.),
                bias_attr=fluid.initializer.Constant(0.))
        elif cmd == "d":  # add dropout
            if dropout_rate:
                out = layers.dropout(
                    out,
                    dropout_prob=dropout_rate,
                    seed=dropout_seed,
                    is_test=False)
    return out


pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer


T
tink2123 已提交
273 274 275 276 277 278 279 280 281 282
def prepare_encoder(
        src_word,  #[b,t,c]
        src_pos,
        src_vocab_size,
        src_emb_dim,
        src_max_len,
        dropout_rate=0.,
        bos_idx=0,
        word_emb_param_name=None,
        pos_enc_param_name=None):
T
tink2123 已提交
283 284 285 286 287
    """Add word embeddings and position encodings.
    The output tensor has a shape of:
    [batch_size, max_src_length_in_batch, d_model].
    This module is used at the bottom of the encoder stacks.
    """
T
tink2123 已提交
288 289 290

    src_word_emb = src_word  #layers.concat(res,axis=1)
    src_word_emb = layers.cast(src_word_emb, 'float32')
T
tink2123 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    # print("src_word_emb",src_word_emb)

    src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5)
    src_pos_enc = layers.embedding(
        src_pos,
        size=[src_max_len, src_emb_dim],
        param_attr=fluid.ParamAttr(
            name=pos_enc_param_name, trainable=False))
    src_pos_enc.stop_gradient = True
    enc_input = src_word_emb + src_pos_enc
    return layers.dropout(
        enc_input, dropout_prob=dropout_rate, seed=dropout_seed,
        is_test=False) if dropout_rate else enc_input


def prepare_decoder(src_word,
T
tink2123 已提交
307 308 309 310 311 312 313 314
                    src_pos,
                    src_vocab_size,
                    src_emb_dim,
                    src_max_len,
                    dropout_rate=0.,
                    bos_idx=0,
                    word_emb_param_name=None,
                    pos_enc_param_name=None):
T
tink2123 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327
    """Add word embeddings and position encodings.
        The output tensor has a shape of:
        [batch_size, max_src_length_in_batch, d_model].
        This module is used at the bottom of the encoder stacks.
        """
    src_word_emb = layers.embedding(
        src_word,
        size=[src_vocab_size, src_emb_dim],
        padding_idx=bos_idx,  # set embedding of bos to 0
        param_attr=fluid.ParamAttr(
            name=word_emb_param_name,
            initializer=fluid.initializer.Normal(0., src_emb_dim**-0.5)))
    # print("target_word_emb",src_word_emb)
T
tink2123 已提交
328
    src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5)
T
tink2123 已提交
329 330 331 332 333 334 335 336 337 338 339
    src_pos_enc = layers.embedding(
        src_pos,
        size=[src_max_len, src_emb_dim],
        param_attr=fluid.ParamAttr(
            name=pos_enc_param_name, trainable=False))
    src_pos_enc.stop_gradient = True
    enc_input = src_word_emb + src_pos_enc
    return layers.dropout(
        enc_input, dropout_prob=dropout_rate, seed=dropout_seed,
        is_test=False) if dropout_rate else enc_input

T
tink2123 已提交
340

T
tink2123 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
# prepare_encoder = partial(
#     prepare_encoder_decoder, pos_enc_param_name=pos_enc_param_names[0])
# prepare_decoder = partial(
#     prepare_encoder_decoder, pos_enc_param_name=pos_enc_param_names[1])


def encoder_layer(enc_input,
                  attn_bias,
                  n_head,
                  d_key,
                  d_value,
                  d_model,
                  d_inner_hid,
                  prepostprocess_dropout,
                  attention_dropout,
                  relu_dropout,
                  preprocess_cmd="n",
                  postprocess_cmd="da"):
    """The encoder layers that can be stacked to form a deep encoder.
    This module consits of a multi-head (self) attention followed by
    position-wise feed-forward networks and both the two components companied
    with the post_process_layer to add residual connection, layer normalization
    and droput.
    """
    attn_output = multi_head_attention(
        pre_process_layer(enc_input, preprocess_cmd,
                          prepostprocess_dropout), None, None, attn_bias, d_key,
        d_value, d_model, n_head, attention_dropout)
    attn_output = post_process_layer(enc_input, attn_output, postprocess_cmd,
                                     prepostprocess_dropout)
    ffd_output = positionwise_feed_forward(
        pre_process_layer(attn_output, preprocess_cmd, prepostprocess_dropout),
        d_inner_hid, d_model, relu_dropout)
    return post_process_layer(attn_output, ffd_output, postprocess_cmd,
                              prepostprocess_dropout)


def encoder(enc_input,
            attn_bias,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            preprocess_cmd="n",
            postprocess_cmd="da"):
    """
    The encoder is composed of a stack of identical layers returned by calling
    encoder_layer.
    """
    for i in range(n_layer):
        enc_output = encoder_layer(
            enc_input,
            attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            preprocess_cmd,
            postprocess_cmd, )
        enc_input = enc_output
    enc_output = pre_process_layer(enc_output, preprocess_cmd,
                                   prepostprocess_dropout)
    return enc_output


def decoder_layer(dec_input,
                  enc_output,
                  slf_attn_bias,
                  dec_enc_attn_bias,
                  n_head,
                  d_key,
                  d_value,
                  d_model,
                  d_inner_hid,
                  prepostprocess_dropout,
                  attention_dropout,
                  relu_dropout,
                  preprocess_cmd,
                  postprocess_cmd,
                  cache=None,
                  gather_idx=None):
    """ The layer to be stacked in decoder part.
    The structure of this module is similar to that in the encoder part except
    a multi-head attention is added to implement encoder-decoder attention.
    """
    slf_attn_output = multi_head_attention(
        pre_process_layer(dec_input, preprocess_cmd, prepostprocess_dropout),
        None,
        None,
        slf_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
        attention_dropout,
        cache=cache,
        gather_idx=gather_idx)
    slf_attn_output = post_process_layer(
        dec_input,
        slf_attn_output,
        postprocess_cmd,
        prepostprocess_dropout, )
    enc_attn_output = multi_head_attention(
        pre_process_layer(slf_attn_output, preprocess_cmd,
                          prepostprocess_dropout),
        enc_output,
        enc_output,
        dec_enc_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
        attention_dropout,
        cache=cache,
        gather_idx=gather_idx,
        static_kv=True)
    enc_attn_output = post_process_layer(
        slf_attn_output,
        enc_attn_output,
        postprocess_cmd,
        prepostprocess_dropout, )
    ffd_output = positionwise_feed_forward(
        pre_process_layer(enc_attn_output, preprocess_cmd,
                          prepostprocess_dropout),
        d_inner_hid,
        d_model,
        relu_dropout, )
    dec_output = post_process_layer(
        enc_attn_output,
        ffd_output,
        postprocess_cmd,
        prepostprocess_dropout, )
    return dec_output


def decoder(dec_input,
            enc_output,
            dec_slf_attn_bias,
            dec_enc_attn_bias,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            preprocess_cmd,
            postprocess_cmd,
            caches=None,
            gather_idx=None):
    """
    The decoder is composed of a stack of identical decoder_layer layers.
    """
    for i in range(n_layer):
        dec_output = decoder_layer(
            dec_input,
            enc_output,
            dec_slf_attn_bias,
            dec_enc_attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            preprocess_cmd,
            postprocess_cmd,
            cache=None if caches is None else caches[i],
            gather_idx=gather_idx)
        dec_input = dec_output
    dec_output = pre_process_layer(dec_output, preprocess_cmd,
                                   prepostprocess_dropout)
    return dec_output


def make_all_inputs(input_fields):
    """
    Define the input data layers for the transformer model.
    """
    inputs = []
    for input_field in input_fields:
        input_var = layers.data(
            name=input_field,
            shape=input_descs[input_field][0],
            dtype=input_descs[input_field][1],
            lod_level=input_descs[input_field][2]
            if len(input_descs[input_field]) == 3 else 0,
            append_batch_size=False)
        inputs.append(input_var)
    return inputs


def make_all_py_reader_inputs(input_fields, is_test=False):
    reader = layers.py_reader(
        capacity=20,
        name="test_reader" if is_test else "train_reader",
        shapes=[input_descs[input_field][0] for input_field in input_fields],
        dtypes=[input_descs[input_field][1] for input_field in input_fields],
        lod_levels=[
            input_descs[input_field][2]
            if len(input_descs[input_field]) == 3 else 0
            for input_field in input_fields
        ])
    return layers.read_file(reader), reader


def transformer(src_vocab_size,
                trg_vocab_size,
                max_length,
                n_layer,
                n_head,
                d_key,
                d_value,
                d_model,
                d_inner_hid,
                prepostprocess_dropout,
                attention_dropout,
                relu_dropout,
                preprocess_cmd,
                postprocess_cmd,
                weight_sharing,
                label_smooth_eps,
                bos_idx=0,
                use_py_reader=False,
                is_test=False):
    if weight_sharing:
        assert src_vocab_size == trg_vocab_size, (
            "Vocabularies in source and target should be same for weight sharing."
        )

    data_input_names = encoder_data_input_fields + \
                decoder_data_input_fields[:-1] + label_data_input_fields

    if use_py_reader:
        all_inputs, reader = make_all_py_reader_inputs(data_input_names,
                                                       is_test)
    else:
        all_inputs = make_all_inputs(data_input_names)
    # print("all inputs",all_inputs)
    enc_inputs_len = len(encoder_data_input_fields)
    dec_inputs_len = len(decoder_data_input_fields[:-1])
    enc_inputs = all_inputs[0:enc_inputs_len]
    dec_inputs = all_inputs[enc_inputs_len:enc_inputs_len + dec_inputs_len]
    label = all_inputs[-2]
    weights = all_inputs[-1]

    enc_output = wrap_encoder(
T
tink2123 已提交
601 602 603
        src_vocab_size, 64, n_layer, n_head, d_key, d_value, d_model,
        d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout,
        preprocess_cmd, postprocess_cmd, weight_sharing, enc_inputs)
T
tink2123 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

    predict = wrap_decoder(
        trg_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd,
        weight_sharing,
        dec_inputs,
        enc_output, )

    # Padding index do not contribute to the total loss. The weights is used to
    # cancel padding index in calculating the loss.
    if label_smooth_eps:
        label = layers.label_smooth(
            label=layers.one_hot(
                input=label, depth=trg_vocab_size),
            epsilon=label_smooth_eps)

    cost = layers.softmax_with_cross_entropy(
        logits=predict,
        label=label,
        soft_label=True if label_smooth_eps else False)
    weighted_cost = cost * weights
    sum_cost = layers.reduce_sum(weighted_cost)
    token_num = layers.reduce_sum(weights)
    token_num.stop_gradient = True
    avg_cost = sum_cost / token_num
    return sum_cost, avg_cost, predict, token_num, reader if use_py_reader else None


def wrap_encoder_forFeature(src_vocab_size,
T
tink2123 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
                            max_length,
                            n_layer,
                            n_head,
                            d_key,
                            d_value,
                            d_model,
                            d_inner_hid,
                            prepostprocess_dropout,
                            attention_dropout,
                            relu_dropout,
                            preprocess_cmd,
                            postprocess_cmd,
                            weight_sharing,
                            enc_inputs=None,
                            bos_idx=0):
T
tink2123 已提交
659 660 661 662 663
    """
    The wrapper assembles together all needed layers for the encoder.
    img, src_pos, src_slf_attn_bias = enc_inputs
    img
    """
T
tink2123 已提交
664

T
tink2123 已提交
665 666 667 668 669
    if enc_inputs is None:
        # This is used to implement independent encoder program in inference.
        conv_features, src_pos, src_slf_attn_bias = make_all_inputs(
            encoder_data_input_fields)
    else:
T
tink2123 已提交
670 671
        conv_features, src_pos, src_slf_attn_bias = enc_inputs  #
        b, t, c = conv_features.shape
T
tink2123 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
        #"""
        #    insert cnn
        #"""
        #import basemodel
        # feat = basemodel.resnet_50(img)

        # mycrnn = basemodel.CRNN()
        # feat = mycrnn.ocr_convs(img,use_cudnn=TrainTaskConfig.use_gpu)
        # b, c, w, h = feat.shape
        # src_word = layers.reshape(feat, shape=[-1, c, w * h])

        #myconv8 = basemodel.conv8()
        #feat = myconv8.net(img )
        #b , c, h, w = feat.shape#h=6
        #print(feat)
        #layers.Print(feat,message="conv_feat",summarize=10)
T
tink2123 已提交
688

T
tink2123 已提交
689 690 691
        #feat =layers.conv2d(feat,c,filter_size =[4 , 1],act="relu")
        #feat = layers.pool2d(feat,pool_stride=(3,1),pool_size=(3,1))
        #src_word = layers.squeeze(feat,axes=[2]) #src_word  [-1,c,ww]
T
tink2123 已提交
692

T
tink2123 已提交
693 694 695 696 697 698 699
        #feat = layers.transpose(feat, [0,3,1,2])
        #src_word = layers.reshape(feat,[-1,w, c*h])
        #src_word = layers.im2sequence(
        #    input=feat,
        #    stride=[1, 1],
        #    filter_size=[feat.shape[2], 1])
        #layers.Print(src_word,message="src_word",summarize=10)
T
tink2123 已提交
700

T
tink2123 已提交
701 702
        # print('feat',feat)
        #print("src_word",src_word)
T
tink2123 已提交
703

T
tink2123 已提交
704 705 706 707 708 709 710 711
    enc_input = prepare_encoder(
        conv_features,
        src_pos,
        src_vocab_size,
        d_model,
        max_length,
        prepostprocess_dropout,
        bos_idx=bos_idx,
T
tink2123 已提交
712
        word_emb_param_name="src_word_emb_table")
T
tink2123 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729

    enc_output = encoder(
        enc_input,
        src_slf_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd, )
    return enc_output

T
tink2123 已提交
730

T
tink2123 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
def wrap_encoder(src_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd,
                 postprocess_cmd,
                 weight_sharing,
                 enc_inputs=None,
                 bos_idx=0):
    """
    The wrapper assembles together all needed layers for the encoder.
    img, src_pos, src_slf_attn_bias = enc_inputs
    img
    """
    if enc_inputs is None:
        # This is used to implement independent encoder program in inference.
        src_word, src_pos, src_slf_attn_bias = make_all_inputs(
            encoder_data_input_fields)
    else:
T
tink2123 已提交
757
        src_word, src_pos, src_slf_attn_bias = enc_inputs  #
T
tink2123 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
        #"""
        #    insert cnn
        #"""
        #import basemodel
        # feat = basemodel.resnet_50(img)

        # mycrnn = basemodel.CRNN()
        # feat = mycrnn.ocr_convs(img,use_cudnn=TrainTaskConfig.use_gpu)
        # b, c, w, h = feat.shape
        # src_word = layers.reshape(feat, shape=[-1, c, w * h])

        #myconv8 = basemodel.conv8()
        #feat = myconv8.net(img )
        #b , c, h, w = feat.shape#h=6
        #print(feat)
        #layers.Print(feat,message="conv_feat",summarize=10)
T
tink2123 已提交
774

T
tink2123 已提交
775 776 777
        #feat =layers.conv2d(feat,c,filter_size =[4 , 1],act="relu")
        #feat = layers.pool2d(feat,pool_stride=(3,1),pool_size=(3,1))
        #src_word = layers.squeeze(feat,axes=[2]) #src_word  [-1,c,ww]
T
tink2123 已提交
778

T
tink2123 已提交
779 780 781 782 783 784 785
        #feat = layers.transpose(feat, [0,3,1,2])
        #src_word = layers.reshape(feat,[-1,w, c*h])
        #src_word = layers.im2sequence(
        #    input=feat,
        #    stride=[1, 1],
        #    filter_size=[feat.shape[2], 1])
        #layers.Print(src_word,message="src_word",summarize=10)
T
tink2123 已提交
786

T
tink2123 已提交
787 788 789 790 791 792 793 794 795 796
        # print('feat',feat)
        #print("src_word",src_word)
    enc_input = prepare_decoder(
        src_word,
        src_pos,
        src_vocab_size,
        d_model,
        max_length,
        prepostprocess_dropout,
        bos_idx=bos_idx,
T
tink2123 已提交
797
        word_emb_param_name="src_word_emb_table")
T
tink2123 已提交
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

    enc_output = encoder(
        enc_input,
        src_slf_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd, )
    return enc_output


def wrap_decoder(trg_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd,
                 postprocess_cmd,
                 weight_sharing,
                 dec_inputs=None,
                 enc_output=None,
                 caches=None,
                 gather_idx=None,
                 bos_idx=0):
    """
    The wrapper assembles together all needed layers for the decoder.
    """
    if dec_inputs is None:
        # This is used to implement independent decoder program in inference.
        trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, enc_output = \
            make_all_inputs(decoder_data_input_fields)
    else:
        trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs

    dec_input = prepare_decoder(
        trg_word,
        trg_pos,
        trg_vocab_size,
        d_model,
        max_length,
        prepostprocess_dropout,
        bos_idx=bos_idx,
T
tink2123 已提交
853 854
        word_emb_param_name="src_word_emb_table"
        if weight_sharing else "trg_word_emb_table")
T
tink2123 已提交
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
    dec_output = decoder(
        dec_input,
        enc_output,
        trg_slf_attn_bias,
        trg_src_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd,
        caches=caches,
        gather_idx=gather_idx)
    return dec_output
    # Reshape to 2D tensor to use GEMM instead of BatchedGEMM
    dec_output = layers.reshape(
        dec_output, shape=[-1, dec_output.shape[-1]], inplace=True)
    if weight_sharing:
        predict = layers.matmul(
            x=dec_output,
            y=fluid.default_main_program().global_block().var(
T
tink2123 已提交
881
                "trg_word_emb_table"),
T
tink2123 已提交
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
            transpose_y=True)
    else:
        predict = layers.fc(input=dec_output,
                            size=trg_vocab_size,
                            bias_attr=False)
    if dec_inputs is None:
        # Return probs for independent decoder program.
        predict = layers.softmax(predict)
    return predict


def fast_decode(src_vocab_size,
                trg_vocab_size,
                max_in_len,
                n_layer,
                n_head,
                d_key,
                d_value,
                d_model,
                d_inner_hid,
                prepostprocess_dropout,
                attention_dropout,
                relu_dropout,
                preprocess_cmd,
                postprocess_cmd,
                weight_sharing,
                beam_size,
                max_out_len,
                bos_idx,
                eos_idx,
                use_py_reader=False):
    """
    Use beam search to decode. Caches will be used to store states of history
    steps which can make the decoding faster.
    """
    data_input_names = encoder_data_input_fields + fast_decoder_data_input_fields

    if use_py_reader:
        all_inputs, reader = make_all_py_reader_inputs(data_input_names)
    else:
        all_inputs = make_all_inputs(data_input_names)

    enc_inputs_len = len(encoder_data_input_fields)
    dec_inputs_len = len(fast_decoder_data_input_fields)
T
tink2123 已提交
926 927 928
    enc_inputs = all_inputs[0:enc_inputs_len]  #enc_inputs tensor
    dec_inputs = all_inputs[enc_inputs_len:enc_inputs_len +
                            dec_inputs_len]  #dec_inputs tensor
T
tink2123 已提交
929 930 931

    enc_output = wrap_encoder(
        src_vocab_size,
T
tink2123 已提交
932
        64,  ##to do !!!!!????
T
tink2123 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd,
        weight_sharing,
        enc_inputs,
        bos_idx=bos_idx)
    start_tokens, init_scores, parent_idx, trg_src_attn_bias = dec_inputs

    def beam_search():
        max_len = layers.fill_constant(
            shape=[1],
            dtype=start_tokens.dtype,
            value=max_out_len,
            force_cpu=True)
        step_idx = layers.fill_constant(
            shape=[1], dtype=start_tokens.dtype, value=0, force_cpu=True)
        cond = layers.less_than(x=step_idx, y=max_len)  # default force_cpu=True
        while_op = layers.While(cond)
        # array states will be stored for each step.
        ids = layers.array_write(
            layers.reshape(start_tokens, (-1, 1)), step_idx)
        scores = layers.array_write(init_scores, step_idx)
        # cell states will be overwrited at each step.
        # caches contains states of history steps in decoder self-attention
        # and static encoder output projections in encoder-decoder attention
        # to reduce redundant computation.
        caches = [
            {
                "k":  # for self attention
                layers.fill_constant_batch_size_like(
                    input=start_tokens,
                    shape=[-1, n_head, 0, d_key],
                    dtype=enc_output.dtype,
                    value=0),
                "v":  # for self attention
                layers.fill_constant_batch_size_like(
                    input=start_tokens,
                    shape=[-1, n_head, 0, d_value],
                    dtype=enc_output.dtype,
                    value=0),
                "static_k":  # for encoder-decoder attention
                layers.create_tensor(dtype=enc_output.dtype),
                "static_v":  # for encoder-decoder attention
                layers.create_tensor(dtype=enc_output.dtype)
            } for i in range(n_layer)
        ]

        with while_op.block():
            pre_ids = layers.array_read(array=ids, i=step_idx)
            # Since beam_search_op dosen't enforce pre_ids' shape, we can do
            # inplace reshape here which actually change the shape of pre_ids.
            pre_ids = layers.reshape(pre_ids, (-1, 1, 1), inplace=True)
            pre_scores = layers.array_read(array=scores, i=step_idx)
            # gather cell states corresponding to selected parent
            pre_src_attn_bias = layers.gather(
                trg_src_attn_bias, index=parent_idx)
            pre_pos = layers.elementwise_mul(
                x=layers.fill_constant_batch_size_like(
                    input=pre_src_attn_bias,  # cann't use lod tensor here
                    value=1,
                    shape=[-1, 1, 1],
                    dtype=pre_ids.dtype),
                y=step_idx,
                axis=0)
            logits = wrap_decoder(
                trg_vocab_size,
                max_in_len,
                n_layer,
                n_head,
                d_key,
                d_value,
                d_model,
                d_inner_hid,
                prepostprocess_dropout,
                attention_dropout,
                relu_dropout,
                preprocess_cmd,
                postprocess_cmd,
                weight_sharing,
                dec_inputs=(pre_ids, pre_pos, None, pre_src_attn_bias),
                enc_output=enc_output,
                caches=caches,
                gather_idx=parent_idx,
                bos_idx=bos_idx)
            # intra-beam topK
            topk_scores, topk_indices = layers.topk(
                input=layers.softmax(logits), k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(topk_scores), y=pre_scores, axis=0)
            # beam_search op uses lod to differentiate branches.
            accu_scores = layers.lod_reset(accu_scores, pre_ids)
            # topK reduction across beams, also contain special handle of
            # end beams and end sentences(batch reduction)
            selected_ids, selected_scores, gather_idx = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=eos_idx,
                return_parent_idx=True)
            layers.increment(x=step_idx, value=1.0, in_place=True)
            # cell states(caches) have been updated in wrap_decoder,
            # only need to update beam search states here.
            layers.array_write(selected_ids, i=step_idx, array=ids)
            layers.array_write(selected_scores, i=step_idx, array=scores)
            layers.assign(gather_idx, parent_idx)
            layers.assign(pre_src_attn_bias, trg_src_attn_bias)
            length_cond = layers.less_than(x=step_idx, y=max_len)
            finish_cond = layers.logical_not(layers.is_empty(x=selected_ids))
            layers.logical_and(x=length_cond, y=finish_cond, out=cond)

        finished_ids, finished_scores = layers.beam_search_decode(
            ids, scores, beam_size=beam_size, end_id=eos_idx)
        return finished_ids, finished_scores

    finished_ids, finished_scores = beam_search()
    return finished_ids, finished_scores, reader if use_py_reader else None