abinet_aug.py 14.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/FangShancheng/ABINet/blob/main/transforms.py
"""
import math
import numbers
import random

import cv2
import numpy as np
from paddle.vision.transforms import Compose, ColorJitter


def sample_asym(magnitude, size=None):
    return np.random.beta(1, 4, size) * magnitude


def sample_sym(magnitude, size=None):
    return (np.random.beta(4, 4, size=size) - 0.5) * 2 * magnitude


def sample_uniform(low, high, size=None):
    return np.random.uniform(low, high, size=size)


def get_interpolation(type='random'):
    if type == 'random':
        choice = [
            cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA
        ]
        interpolation = choice[random.randint(0, len(choice) - 1)]
    elif type == 'nearest':
        interpolation = cv2.INTER_NEAREST
    elif type == 'linear':
        interpolation = cv2.INTER_LINEAR
    elif type == 'cubic':
        interpolation = cv2.INTER_CUBIC
    elif type == 'area':
        interpolation = cv2.INTER_AREA
    else:
        raise TypeError(
            'Interpolation types only nearest, linear, cubic, area are supported!'
        )
    return interpolation


class CVRandomRotation(object):
    def __init__(self, degrees=15):
        assert isinstance(degrees,
                          numbers.Number), "degree should be a single number."
        assert degrees >= 0, "degree must be positive."
        self.degrees = degrees

    @staticmethod
    def get_params(degrees):
        return sample_sym(degrees)

    def __call__(self, img):
        angle = self.get_params(self.degrees)
        src_h, src_w = img.shape[:2]
        M = cv2.getRotationMatrix2D(
            center=(src_w / 2, src_h / 2), angle=angle, scale=1.0)
        abs_cos, abs_sin = abs(M[0, 0]), abs(M[0, 1])
        dst_w = int(src_h * abs_sin + src_w * abs_cos)
        dst_h = int(src_h * abs_cos + src_w * abs_sin)
        M[0, 2] += (dst_w - src_w) / 2
        M[1, 2] += (dst_h - src_h) / 2

        flags = get_interpolation()
        return cv2.warpAffine(
            img,
            M, (dst_w, dst_h),
            flags=flags,
            borderMode=cv2.BORDER_REPLICATE)


class CVRandomAffine(object):
    def __init__(self, degrees, translate=None, scale=None, shear=None):
        assert isinstance(degrees,
                          numbers.Number), "degree should be a single number."
        assert degrees >= 0, "degree must be positive."
        self.degrees = degrees

        if translate is not None:
            assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
                "translate should be a list or tuple and it must be of length 2."
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError(
                        "translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
            assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
                "scale should be a list or tuple and it must be of length 2."
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            if isinstance(shear, numbers.Number):
                if shear < 0:
                    raise ValueError(
                        "If shear is a single number, it must be positive.")
                self.shear = [shear]
            else:
                assert isinstance(shear, (tuple, list)) and (len(shear) == 2), \
                    "shear should be a list or tuple and it must be of length 2."
                self.shear = shear
        else:
            self.shear = shear

    def _get_inverse_affine_matrix(self, center, angle, translate, scale,
                                   shear):
        # https://github.com/pytorch/vision/blob/v0.4.0/torchvision/transforms/functional.py#L717
        from numpy import sin, cos, tan

        if isinstance(shear, numbers.Number):
            shear = [shear, 0]

        if not isinstance(shear, (tuple, list)) and len(shear) == 2:
            raise ValueError(
                "Shear should be a single value or a tuple/list containing " +
                "two values. Got {}".format(shear))

        rot = math.radians(angle)
        sx, sy = [math.radians(s) for s in shear]

        cx, cy = center
        tx, ty = translate

        # RSS without scaling
        a = cos(rot - sy) / cos(sy)
        b = -cos(rot - sy) * tan(sx) / cos(sy) - sin(rot)
        c = sin(rot - sy) / cos(sy)
        d = -sin(rot - sy) * tan(sx) / cos(sy) + cos(rot)

        # Inverted rotation matrix with scale and shear
        # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
        M = [d, -b, 0, -c, a, 0]
        M = [x / scale for x in M]

        # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
        M[2] += M[0] * (-cx - tx) + M[1] * (-cy - ty)
        M[5] += M[3] * (-cx - tx) + M[4] * (-cy - ty)

        # Apply center translation: C * RSS^-1 * C^-1 * T^-1
        M[2] += cx
        M[5] += cy
        return M

    @staticmethod
    def get_params(degrees, translate, scale_ranges, shears, height):
        angle = sample_sym(degrees)
        if translate is not None:
            max_dx = translate[0] * height
            max_dy = translate[1] * height
            translations = (np.round(sample_sym(max_dx)),
                            np.round(sample_sym(max_dy)))
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = sample_uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        if shears is not None:
            if len(shears) == 1:
                shear = [sample_sym(shears[0]), 0.]
            elif len(shears) == 2:
                shear = [sample_sym(shears[0]), sample_sym(shears[1])]
        else:
            shear = 0.0

        return angle, translations, scale, shear

    def __call__(self, img):
        src_h, src_w = img.shape[:2]
        angle, translate, scale, shear = self.get_params(
            self.degrees, self.translate, self.scale, self.shear, src_h)

        M = self._get_inverse_affine_matrix((src_w / 2, src_h / 2), angle,
                                            (0, 0), scale, shear)
        M = np.array(M).reshape(2, 3)

        startpoints = [(0, 0), (src_w - 1, 0), (src_w - 1, src_h - 1),
                       (0, src_h - 1)]
        project = lambda x, y, a, b, c: int(a * x + b * y + c)
        endpoints = [(project(x, y, *M[0]), project(x, y, *M[1]))
                     for x, y in startpoints]

        rect = cv2.minAreaRect(np.array(endpoints))
        bbox = cv2.boxPoints(rect).astype(dtype=np.int)
        max_x, max_y = bbox[:, 0].max(), bbox[:, 1].max()
        min_x, min_y = bbox[:, 0].min(), bbox[:, 1].min()

        dst_w = int(max_x - min_x)
        dst_h = int(max_y - min_y)
        M[0, 2] += (dst_w - src_w) / 2
        M[1, 2] += (dst_h - src_h) / 2

        # add translate
        dst_w += int(abs(translate[0]))
        dst_h += int(abs(translate[1]))
        if translate[0] < 0: M[0, 2] += abs(translate[0])
        if translate[1] < 0: M[1, 2] += abs(translate[1])

        flags = get_interpolation()
        return cv2.warpAffine(
            img,
            M, (dst_w, dst_h),
            flags=flags,
            borderMode=cv2.BORDER_REPLICATE)


class CVRandomPerspective(object):
    def __init__(self, distortion=0.5):
        self.distortion = distortion

    def get_params(self, width, height, distortion):
        offset_h = sample_asym(
            distortion * height / 2, size=4).astype(dtype=np.int)
        offset_w = sample_asym(
            distortion * width / 2, size=4).astype(dtype=np.int)
        topleft = (offset_w[0], offset_h[0])
        topright = (width - 1 - offset_w[1], offset_h[1])
        botright = (width - 1 - offset_w[2], height - 1 - offset_h[2])
        botleft = (offset_w[3], height - 1 - offset_h[3])

        startpoints = [(0, 0), (width - 1, 0), (width - 1, height - 1),
                       (0, height - 1)]
        endpoints = [topleft, topright, botright, botleft]
        return np.array(
            startpoints, dtype=np.float32), np.array(
                endpoints, dtype=np.float32)

    def __call__(self, img):
        height, width = img.shape[:2]
        startpoints, endpoints = self.get_params(width, height, self.distortion)
        M = cv2.getPerspectiveTransform(startpoints, endpoints)

        # TODO: more robust way to crop image
        rect = cv2.minAreaRect(endpoints)
        bbox = cv2.boxPoints(rect).astype(dtype=np.int)
        max_x, max_y = bbox[:, 0].max(), bbox[:, 1].max()
        min_x, min_y = bbox[:, 0].min(), bbox[:, 1].min()
        min_x, min_y = max(min_x, 0), max(min_y, 0)

        flags = get_interpolation()
        img = cv2.warpPerspective(
            img,
            M, (max_x, max_y),
            flags=flags,
            borderMode=cv2.BORDER_REPLICATE)
        img = img[min_y:, min_x:]
        return img


class CVRescale(object):
    def __init__(self, factor=4, base_size=(128, 512)):
        """ Define image scales using gaussian pyramid and rescale image to target scale.
        
        Args:
            factor: the decayed factor from base size, factor=4 keeps target scale by default.
            base_size: base size the build the bottom layer of pyramid
        """
        if isinstance(factor, numbers.Number):
            self.factor = round(sample_uniform(0, factor))
        elif isinstance(factor, (tuple, list)) and len(factor) == 2:
            self.factor = round(sample_uniform(factor[0], factor[1]))
        else:
            raise Exception('factor must be number or list with length 2')
        # assert factor is valid
        self.base_h, self.base_w = base_size[:2]

    def __call__(self, img):
        if self.factor == 0: return img
        src_h, src_w = img.shape[:2]
        cur_w, cur_h = self.base_w, self.base_h
        scale_img = cv2.resize(
            img, (cur_w, cur_h), interpolation=get_interpolation())
        for _ in range(self.factor):
            scale_img = cv2.pyrDown(scale_img)
        scale_img = cv2.resize(
            scale_img, (src_w, src_h), interpolation=get_interpolation())
        return scale_img


class CVGaussianNoise(object):
    def __init__(self, mean=0, var=20):
        self.mean = mean
        if isinstance(var, numbers.Number):
            self.var = max(int(sample_asym(var)), 1)
        elif isinstance(var, (tuple, list)) and len(var) == 2:
            self.var = int(sample_uniform(var[0], var[1]))
        else:
            raise Exception('degree must be number or list with length 2')

    def __call__(self, img):
        noise = np.random.normal(self.mean, self.var**0.5, img.shape)
        img = np.clip(img + noise, 0, 255).astype(np.uint8)
        return img


class CVMotionBlur(object):
    def __init__(self, degrees=12, angle=90):
        if isinstance(degrees, numbers.Number):
            self.degree = max(int(sample_asym(degrees)), 1)
        elif isinstance(degrees, (tuple, list)) and len(degrees) == 2:
            self.degree = int(sample_uniform(degrees[0], degrees[1]))
        else:
            raise Exception('degree must be number or list with length 2')
        self.angle = sample_uniform(-angle, angle)

    def __call__(self, img):
        M = cv2.getRotationMatrix2D((self.degree // 2, self.degree // 2),
                                    self.angle, 1)
        motion_blur_kernel = np.zeros((self.degree, self.degree))
        motion_blur_kernel[self.degree // 2, :] = 1
        motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M,
                                            (self.degree, self.degree))
        motion_blur_kernel = motion_blur_kernel / self.degree
        img = cv2.filter2D(img, -1, motion_blur_kernel)
        img = np.clip(img, 0, 255).astype(np.uint8)
        return img


class CVGeometry(object):
    def __init__(self,
                 degrees=15,
                 translate=(0.3, 0.3),
                 scale=(0.5, 2.),
                 shear=(45, 15),
                 distortion=0.5,
                 p=0.5):
        self.p = p
        type_p = random.random()
        if type_p < 0.33:
            self.transforms = CVRandomRotation(degrees=degrees)
        elif type_p < 0.66:
            self.transforms = CVRandomAffine(
                degrees=degrees, translate=translate, scale=scale, shear=shear)
        else:
            self.transforms = CVRandomPerspective(distortion=distortion)

    def __call__(self, img):
        if random.random() < self.p:
            return self.transforms(img)
        else:
            return img


class CVDeterioration(object):
    def __init__(self, var, degrees, factor, p=0.5):
        self.p = p
        transforms = []
        if var is not None:
            transforms.append(CVGaussianNoise(var=var))
        if degrees is not None:
            transforms.append(CVMotionBlur(degrees=degrees))
        if factor is not None:
            transforms.append(CVRescale(factor=factor))

        random.shuffle(transforms)
        transforms = Compose(transforms)
        self.transforms = transforms

    def __call__(self, img):
        if random.random() < self.p:

            return self.transforms(img)
        else:
            return img


class CVColorJitter(object):
    def __init__(self,
                 brightness=0.5,
                 contrast=0.5,
                 saturation=0.5,
                 hue=0.1,
                 p=0.5):
        self.p = p
        self.transforms = ColorJitter(
            brightness=brightness,
            contrast=contrast,
            saturation=saturation,
            hue=hue)

    def __call__(self, img):
        if random.random() < self.p: return self.transforms(img)
        else: return img