test_train_inference_python.sh 16.6 KB
Newer Older
M
MissPenguin 已提交
1
#!/bin/bash
L
fix bug  
LDOUBLEV 已提交
2
source test_tipc/common_func.sh
M
MissPenguin 已提交
3 4

FILENAME=$1
A
andyjpaddle 已提交
5
# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer', 'whole_infer']
L
LDOUBLEV 已提交
6 7
MODE=$2

L
LDOUBLEV 已提交
8
dataline=$(awk 'NR==1, NR==51{print}'  $FILENAME)
M
MissPenguin 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22

# parser params
IFS=$'\n'
lines=(${dataline})

# The training params
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
gpu_list=$(func_parser_value "${lines[3]}")
train_use_gpu_key=$(func_parser_key "${lines[4]}")
train_use_gpu_value=$(func_parser_value "${lines[4]}")
autocast_list=$(func_parser_value "${lines[5]}")
autocast_key=$(func_parser_key "${lines[5]}")
epoch_key=$(func_parser_key "${lines[6]}")
L
LDOUBLEV 已提交
23
epoch_num=$(func_parser_params "${lines[6]}" "${MODE}")
M
MissPenguin 已提交
24 25
save_model_key=$(func_parser_key "${lines[7]}")
train_batch_key=$(func_parser_key "${lines[8]}")
L
LDOUBLEV 已提交
26
train_batch_value=$(func_parser_params "${lines[8]}" "${MODE}")
M
MissPenguin 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}")
train_infer_img_dir=$(func_parser_value "${lines[11]}")
train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")

trainer_list=$(func_parser_value "${lines[14]}")
trainer_norm=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")
pact_key=$(func_parser_key "${lines[16]}")
pact_trainer=$(func_parser_value "${lines[16]}")
fpgm_key=$(func_parser_key "${lines[17]}")
fpgm_trainer=$(func_parser_value "${lines[17]}")
distill_key=$(func_parser_key "${lines[18]}")
distill_trainer=$(func_parser_value "${lines[18]}")
trainer_key1=$(func_parser_key "${lines[19]}")
trainer_value1=$(func_parser_value "${lines[19]}")
trainer_key2=$(func_parser_key "${lines[20]}")
trainer_value2=$(func_parser_value "${lines[20]}")

eval_py=$(func_parser_value "${lines[23]}")
eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}")

save_infer_key=$(func_parser_key "${lines[27]}")
export_weight=$(func_parser_key "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}")
pact_export=$(func_parser_value "${lines[30]}")
fpgm_export=$(func_parser_value "${lines[31]}")
distill_export=$(func_parser_value "${lines[32]}")
export_key1=$(func_parser_key "${lines[33]}")
export_value1=$(func_parser_value "${lines[33]}")
export_key2=$(func_parser_key "${lines[34]}")
export_value2=$(func_parser_value "${lines[34]}")
L
LDOUBLEV 已提交
62
inference_dir=$(func_parser_value "${lines[35]}")
M
MissPenguin 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

# parser inference model 
infer_model_dir_list=$(func_parser_value "${lines[36]}")
infer_export_list=$(func_parser_value "${lines[37]}")
infer_is_quant=$(func_parser_value "${lines[38]}")
# parser inference 
inference_py=$(func_parser_value "${lines[39]}")
use_gpu_key=$(func_parser_key "${lines[40]}")
use_gpu_list=$(func_parser_value "${lines[40]}")
use_mkldnn_key=$(func_parser_key "${lines[41]}")
use_mkldnn_list=$(func_parser_value "${lines[41]}")
cpu_threads_key=$(func_parser_key "${lines[42]}")
cpu_threads_list=$(func_parser_value "${lines[42]}")
batch_size_key=$(func_parser_key "${lines[43]}")
batch_size_list=$(func_parser_value "${lines[43]}")
use_trt_key=$(func_parser_key "${lines[44]}")
use_trt_list=$(func_parser_value "${lines[44]}")
precision_key=$(func_parser_key "${lines[45]}")
precision_list=$(func_parser_value "${lines[45]}")
infer_model_key=$(func_parser_key "${lines[46]}")
image_dir_key=$(func_parser_key "${lines[47]}")
infer_img_dir=$(func_parser_value "${lines[47]}")
save_log_key=$(func_parser_key "${lines[48]}")
benchmark_key=$(func_parser_key "${lines[49]}")
benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")

91
LOG_PATH="./test_tipc/output/${model_name}/${MODE}"
M
MissPenguin 已提交
92
mkdir -p ${LOG_PATH}
L
LDOUBLEV 已提交
93
status_log="${LOG_PATH}/results_python.log"
M
MissPenguin 已提交
94 95 96 97 98 99 100 101 102 103


function func_inference(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    _log_path=$4
    _img_dir=$5
    _flag_quant=$6
A
andyjpaddle 已提交
104
    _gpu=$7
M
MissPenguin 已提交
105 106 107 108
    # inference 
    for use_gpu in ${use_gpu_list[*]}; do
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
            for use_mkldnn in ${use_mkldnn_list[*]}; do
A
andyjpaddle 已提交
109 110 111
                # if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                #     continue
                # fi
M
MissPenguin 已提交
112 113
                for threads in ${cpu_threads_list[*]}; do
                    for batch_size in ${batch_size_list[*]}; do
L
LDOUBLEV 已提交
114 115 116 117 118 119 120 121 122
                        for precision in ${precision_list[*]}; do
                            if [ ${use_mkldnn} = "False" ] && [ ${precision} = "fp16" ]; then
                                continue
                            fi # skip when enable fp16 but disable mkldnn
                            if [ ${_flag_quant} = "True" ] && [ ${precision} != "int8" ]; then
                                continue
                            fi # skip when quant model inference but precision is not int8
                            set_precision=$(func_set_params "${precision_key}" "${precision}")
                            
A
andyjpaddle 已提交
123
                            _save_log_path="${_log_path}/python_infer_cpu_gpus_${_gpu}_usemkldnn_${use_mkldnn}_threads_${threads}_precision_${precision}_batchsize_${batch_size}.log"
L
LDOUBLEV 已提交
124 125 126
                            set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                            set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                            set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
littletomatodonkey's avatar
littletomatodonkey 已提交
127
                            set_mkldnn=$(func_set_params "${use_mkldnn_key}" "${use_mkldnn}")
L
LDOUBLEV 已提交
128 129
                            set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
                            set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
L
LDOUBLEV 已提交
130
                            set_infer_params0=$(func_set_params "${save_log_key}" "${save_log_value}")
L
LDOUBLEV 已提交
131
                            set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
littletomatodonkey's avatar
littletomatodonkey 已提交
132
                            command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_params0} ${set_infer_data} ${set_benchmark} ${set_precision} ${set_infer_params1} > ${_save_log_path} 2>&1 "
L
LDOUBLEV 已提交
133 134 135
                            eval $command
                            last_status=${PIPESTATUS[0]}
                            eval "cat ${_save_log_path}"
A
andyjpaddle 已提交
136
                            status_check $last_status "${command}" "${status_log}" "${model_name}"
L
LDOUBLEV 已提交
137
                        done
M
MissPenguin 已提交
138 139 140 141 142 143 144 145 146 147 148 149
                    done
                done
            done
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
            for use_trt in ${use_trt_list[*]}; do
                for precision in ${precision_list[*]}; do
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
                        continue
                    fi 
                    if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
                        continue
                    fi
D
Double_V 已提交
150
                    if [[ ${use_trt} = "False" && ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
M
MissPenguin 已提交
151 152 153
                        continue
                    fi
                    for batch_size in ${batch_size_list[*]}; do
A
andyjpaddle 已提交
154
                        _save_log_path="${_log_path}/python_infer_gpu_gpus_${_gpu}_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
M
MissPenguin 已提交
155 156 157 158 159 160
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
                        set_precision=$(func_set_params "${precision_key}" "${precision}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
L
LDOUBLEV 已提交
161
                        set_infer_params0=$(func_set_params "${save_log_key}" "${save_log_value}")
M
MissPenguin 已提交
162
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
L
LDOUBLEV 已提交
163
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} ${set_infer_params0} > ${_save_log_path} 2>&1 "
M
MissPenguin 已提交
164 165 166
                        eval $command
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
A
andyjpaddle 已提交
167
                        status_check $last_status "${command}" "${status_log}" "${model_name}"
M
MissPenguin 已提交
168 169 170 171 172 173 174 175 176 177
                        
                    done
                done
            done
        else
            echo "Does not support hardware other than CPU and GPU Currently!"
        fi
    done
}

A
andyjpaddle 已提交
178
if [ ${MODE} = "whole_infer" ]; then
L
LDOUBLEV 已提交
179 180 181 182 183 184 185 186 187
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    # set CUDA_VISIBLE_DEVICES
    eval $env
    export Count=0
A
andyjpaddle 已提交
188
    gpu=0
L
LDOUBLEV 已提交
189 190 191 192 193
    IFS="|"
    infer_run_exports=(${infer_export_list})
    infer_quant_flag=(${infer_is_quant})
    for infer_model in ${infer_model_dir_list[*]}; do
        # run export
A
andyjpaddle 已提交
194 195
        if [ ${infer_run_exports[Count]} != "null" ];then 
            save_infer_dir="${infer_model}"
L
LDOUBLEV 已提交
196 197
            set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
            set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
A
andyjpaddle 已提交
198
            export_log_path="${LOG_PATH}_export_${Count}.log"
A
andyjpaddle 已提交
199
            export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key} > ${export_log_path} 2>&1 "
L
LDOUBLEV 已提交
200
            echo ${infer_run_exports[Count]} 
T
tink2123 已提交
201
            echo $export_cmd
L
LDOUBLEV 已提交
202 203
            eval $export_cmd
            status_export=$?
A
andyjpaddle 已提交
204
            status_check $status_export "${export_cmd}" "${status_log}" "${model_name}"
L
LDOUBLEV 已提交
205 206 207 208 209
        else
            save_infer_dir=${infer_model}
        fi
        #run inference
        is_quant=${infer_quant_flag[Count]}
A
andyjpaddle 已提交
210
        func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant} "${gpu}"
L
LDOUBLEV 已提交
211 212
        Count=$(($Count + 1))
    done
M
MissPenguin 已提交
213
else
L
LDOUBLEV 已提交
214 215 216 217
    IFS="|"
    export Count=0
    USE_GPU_KEY=(${train_use_gpu_value})
    for gpu in ${gpu_list[*]}; do
S
stephon 已提交
218
        train_use_gpu=${USE_GPU_KEY[Count]}
L
LDOUBLEV 已提交
219
        Count=$(($Count + 1))
B
Bin Lu 已提交
220
        ips=""
L
LDOUBLEV 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        if [ ${gpu} = "-1" ];then
            env=""
        elif [ ${#gpu} -le 1 ];then
            env="export CUDA_VISIBLE_DEVICES=${gpu}"
        elif [ ${#gpu} -le 15 ];then
            IFS=","
            array=(${gpu})
            env="export CUDA_VISIBLE_DEVICES=${array[0]}"
            IFS="|"
        else
            IFS=";"
            array=(${gpu})
            ips=${array[0]}
            gpu=${array[1]}
            IFS="|"
            env=" "
        fi
        for autocast in ${autocast_list[*]}; do 
S
stephon 已提交
239
            if [ ${autocast} = "amp" ]; then
B
Bin Lu 已提交
240
                set_amp_config="Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True"
S
stephon 已提交
241 242 243
            else
                set_amp_config=" "
            fi          
L
LDOUBLEV 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
            for trainer in ${trainer_list[*]}; do 
                flag_quant=False
                if [ ${trainer} = ${pact_key} ]; then
                    run_train=${pact_trainer}
                    run_export=${pact_export}
                    flag_quant=True
                elif [ ${trainer} = "${fpgm_key}" ]; then
                    run_train=${fpgm_trainer}
                    run_export=${fpgm_export}
                elif [ ${trainer} = "${distill_key}" ]; then
                    run_train=${distill_trainer}
                    run_export=${distill_export}
                elif [ ${trainer} = ${trainer_key1} ]; then
                    run_train=${trainer_value1}
                    run_export=${export_value1}
                elif [[ ${trainer} = ${trainer_key2} ]]; then
                    run_train=${trainer_value2}
                    run_export=${export_value2}
                else
                    run_train=${norm_trainer}
                    run_export=${norm_export}
                fi

                if [ ${run_train} = "null" ]; then
                    continue
                fi
L
LDOUBLEV 已提交
270

L
LDOUBLEV 已提交
271 272 273 274
                set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
                set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
                set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
                set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
S
stephon 已提交
275
                set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${train_use_gpu}")
littletomatodonkey's avatar
littletomatodonkey 已提交
276 277 278
                # if length of ips >= 15, then it is seen as multi-machine
                # 15 is the min length of ips info for multi-machine: 0.0.0.0,0.0.0.0
                if [ ${#ips} -le 15 ];then
L
LDOUBLEV 已提交
279
                    save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
S
stephon 已提交
280
                    nodes=1
S
stephon 已提交
281 282 283 284 285
                else
                    IFS=","
                    ips_array=(${ips})
                    IFS="|"
                    nodes=${#ips_array[@]}
L
LDOUBLEV 已提交
286
                    save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}"
S
stephon 已提交
287 288
                fi

M
MissPenguin 已提交
289

L
LDOUBLEV 已提交
290 291
                set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
                if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
L
LDOUBLEV 已提交
292
                    cmd="${python} ${run_train} ${set_use_gpu}  ${set_save_model} ${set_epoch} ${set_pretrain}  ${set_batchsize} ${set_train_params1} ${set_amp_config} "
littletomatodonkey's avatar
littletomatodonkey 已提交
293
                elif [ ${#ips} -le 15 ];then  # train with multi-gpu
L
LDOUBLEV 已提交
294
                    cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain}  ${set_batchsize} ${set_train_params1} ${set_amp_config}"
L
LDOUBLEV 已提交
295
                else     # train with multi-machine
L
LDOUBLEV 已提交
296
                    cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch}  ${set_batchsize} ${set_train_params1} ${set_amp_config}"
L
LDOUBLEV 已提交
297 298 299
                fi
                # run train
                eval $cmd
A
andyjpaddle 已提交
300
                eval "cat ${save_log}/train.log >> ${save_log}.log"
A
andyjpaddle 已提交
301
                status_check $? "${cmd}" "${status_log}" "${model_name}"
L
LDOUBLEV 已提交
302 303

                set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
L
LDOUBLEV 已提交
304

L
LDOUBLEV 已提交
305 306
                # run eval 
                if [ ${eval_py} != "null" ]; then
L
fix bug  
LDOUBLEV 已提交
307
                    eval ${env}
L
LDOUBLEV 已提交
308
                    set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
A
andyjpaddle 已提交
309 310
                    eval_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_eval.log"
                    eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1} > ${eval_log_path} 2>&1 " 
L
LDOUBLEV 已提交
311
                    eval $eval_cmd
A
andyjpaddle 已提交
312
                    status_check $? "${eval_cmd}" "${status_log}" "${model_name}"
L
LDOUBLEV 已提交
313 314 315 316 317
                fi
                # run export model
                if [ ${run_export} != "null" ]; then 
                    # run export model
                    save_infer_path="${save_log}"
A
andyjpaddle 已提交
318
                    export_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_export.log"
L
LDOUBLEV 已提交
319 320
                    set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}")
                    set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
A
andyjpaddle 已提交
321
                    export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key} > ${export_log_path} 2>&1 "
L
LDOUBLEV 已提交
322
                    eval $export_cmd
A
andyjpaddle 已提交
323
                    status_check $? "${export_cmd}" "${status_log}" "${model_name}"
L
LDOUBLEV 已提交
324 325 326 327

                    #run inference
                    eval $env
                    save_infer_path="${save_log}"
T
tink2123 已提交
328
                    if [[ ${inference_dir} != "null" ]] && [[ ${inference_dir} != '##' ]]; then
L
LDOUBLEV 已提交
329 330 331 332
                        infer_model_dir="${save_infer_path}/${inference_dir}"
                    else
                        infer_model_dir=${save_infer_path}
                    fi
A
andyjpaddle 已提交
333
                    func_inference "${python}" "${inference_py}" "${infer_model_dir}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}" "${gpu}"
L
LDOUBLEV 已提交
334
                    
L
LDOUBLEV 已提交
335 336 337 338 339 340
                    eval "unset CUDA_VISIBLE_DEVICES"
                fi
            done  # done with:    for trainer in ${trainer_list[*]}; do 
        done      # done with:    for autocast in ${autocast_list[*]}; do 
    done          # done with:    for gpu in ${gpu_list[*]}; do
fi  # end if [ ${MODE} = "infer" ]; then
M
MissPenguin 已提交
341