ch_PP-OCRv3_det_student.yml 3.2 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6
Global:
  debug: false
  use_gpu: true
  epoch_num: 500
  log_smooth_window: 20
  print_batch_step: 10
L
LDOUBLEV 已提交
7
  save_model_dir: ./output/ch_PP-OCR_V3_det/
L
LDOUBLEV 已提交
8 9 10 11 12
  save_epoch_step: 100
  eval_batch_step:
  - 0
  - 400
  cal_metric_during_train: false
13
  pretrained_model: https://paddleocr.bj.bcebos.com/pretrained/MobileNetV3_large_x0_5_pretrained.pdparams
L
LDOUBLEV 已提交
14 15 16 17 18 19
  checkpoints: null
  save_inference_dir: null
  use_visualdl: false
  infer_img: doc/imgs_en/img_10.jpg
  save_res_path: ./checkpoints/det_db/predicts_db.txt
  distributed: true
L
LDOUBLEV 已提交
20

L
LDOUBLEV 已提交
21 22 23 24 25 26 27 28 29 30
Architecture:
  model_type: det
  algorithm: DB
  Transform:
  Backbone:
    name: MobileNetV3
    scale: 0.5
    model_name: large
    disable_se: True
  Neck:
L
rename  
LDOUBLEV 已提交
31
    name: RSEFPN
L
LDOUBLEV 已提交
32
    out_channels: 96
L
fix det  
LDOUBLEV 已提交
33
    shortcut: True
L
LDOUBLEV 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
  Head:
    name: DBHead
    k: 50

Loss:
  name: DBLoss
  balance_loss: true
  main_loss_type: DiceLoss
  alpha: 5
  beta: 10
  ohem_ratio: 3
Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    name: Cosine
    learning_rate: 0.001
    warmup_epoch: 2
  regularizer:
    name: L2
    factor: 5.0e-05
PostProcess:
  name: DBPostProcess
  thresh: 0.3
  box_thresh: 0.6
  max_candidates: 1000
  unclip_ratio: 1.5
Metric:
  name: DetMetric
  main_indicator: hmean
Train:
  dataset:
    name: SimpleDataSet
L
LDOUBLEV 已提交
68
    data_dir: ./train_data/icdar2015/text_localization/
L
LDOUBLEV 已提交
69
    label_file_list:
L
LDOUBLEV 已提交
70 71
      - ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
    ratio_list: [1.0]
L
LDOUBLEV 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    transforms:
    - DecodeImage:
        img_mode: BGR
        channel_first: false
    - DetLabelEncode: null
    - IaaAugment:
        augmenter_args:
        - type: Fliplr
          args:
            p: 0.5
        - type: Affine
          args:
            rotate:
            - -10
            - 10
        - type: Resize
          args:
            size:
            - 0.5
            - 3
    - EastRandomCropData:
        size:
        - 960
        - 960
        max_tries: 50
        keep_ratio: true
    - MakeBorderMap:
        shrink_ratio: 0.4
        thresh_min: 0.3
        thresh_max: 0.7
    - MakeShrinkMap:
        shrink_ratio: 0.4
        min_text_size: 8
    - NormalizeImage:
        scale: 1./255.
        mean:
        - 0.485
        - 0.456
        - 0.406
        std:
        - 0.229
        - 0.224
        - 0.225
        order: hwc
    - ToCHWImage: null
    - KeepKeys:
        keep_keys:
        - image
        - threshold_map
        - threshold_mask
        - shrink_map
        - shrink_mask
  loader:
    shuffle: true
    drop_last: false
    batch_size_per_card: 8
    num_workers: 4
Eval:
  dataset:
    name: SimpleDataSet
L
LDOUBLEV 已提交
132
    data_dir: ./train_data/icdar2015/text_localization/
L
LDOUBLEV 已提交
133
    label_file_list:
L
LDOUBLEV 已提交
134
      - ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
L
LDOUBLEV 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    transforms:
    - DecodeImage:
        img_mode: BGR
        channel_first: false
    - DetLabelEncode: null
    - DetResizeForTest: null
    - NormalizeImage:
        scale: 1./255.
        mean:
        - 0.485
        - 0.456
        - 0.406
        std:
        - 0.229
        - 0.224
        - 0.225
        order: hwc
    - ToCHWImage: null
    - KeepKeys:
        keep_keys:
        - image
        - shape
        - polys
        - ignore_tags
  loader:
    shuffle: false
    drop_last: false
    batch_size_per_card: 1
    num_workers: 2