rec_resnet50_fpn.py 6.9 KB
Newer Older
T
tink2123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr


__all__ = ["ResNet", "ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"]

Trainable = True
w_nolr = fluid.ParamAttr(
        trainable = Trainable)
train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "batch_size": 256,
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}

class ResNet():
    def __init__(self, params):
        self.layers = params['layers']
        self.params = train_parameters


    def __call__(self, input):
        layers = self.layers
        supported_layers = [18, 34, 50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        stride_list = [(2,2),(2,2),(1,1),(1,1)]
        num_filters = [64, 128, 256, 512]

        conv = self.conv_bn_layer(
            input=input, num_filters=64, filter_size=7, stride=2, act='relu', name="conv1")
        F = [] 
        if layers >= 50:
            for block in range(len(depth)):
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    conv = self.bottleneck_block(
                        input=conv,
                        num_filters=num_filters[block],
                        stride=stride_list[block]  if i == 0 else 1, name=conv_name)
                F.append(conv)

        base = F[-1]
        for i in [-2, -3]:  
            b, c, w, h = F[i].shape
            if (w,h) == base.shape[2:]:
                base = base
            else:
                base = fluid.layers.conv2d_transpose( input=base, num_filters=c,filter_size=4, stride=2,
                    padding=1,act=None,
                    param_attr=w_nolr,
                    bias_attr=w_nolr)
                base = fluid.layers.batch_norm(base, act = "relu", param_attr=w_nolr, bias_attr=w_nolr)
            base = fluid.layers.concat([base, F[i]], axis=1)
            base = fluid.layers.conv2d(base, num_filters=c, filter_size=1, param_attr=w_nolr, bias_attr=w_nolr)
            base = fluid.layers.conv2d(base, num_filters=c, filter_size=3,padding = 1, param_attr=w_nolr, bias_attr=w_nolr)
            base = fluid.layers.batch_norm(base, act = "relu", param_attr=w_nolr, bias_attr=w_nolr)

        base = fluid.layers.conv2d(base, num_filters=512, filter_size=1,bias_attr=w_nolr,param_attr=w_nolr)

        return base

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      act=None,
                      name=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size= 2  if stride==(1,1)  else filter_size,
            dilation = 2 if stride==(1,1) else 1,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights",trainable = Trainable),
            bias_attr=False,
            name=name + '.conv2d.output.1')

        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        return fluid.layers.batch_norm(input=conv,
                                       act=act,
                                       name=bn_name + '.output.1',
                                       param_attr=ParamAttr(name=bn_name + '_scale',trainable = Trainable),
                                       bias_attr=ParamAttr(bn_name + '_offset',trainable = Trainable),
                                       moving_mean_name=bn_name + '_mean',
                                       moving_variance_name=bn_name + '_variance', )

    def shortcut(self, input, ch_out, stride, is_first, name):
        ch_in = input.shape[1]
        if ch_in != ch_out or stride != 1 or is_first == True:
            if stride == (1,1):
                return self.conv_bn_layer(input, ch_out, 1, 1, name=name)
            else: #stride == (2,2)
                return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
                
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, name):
        conv0 = self.conv_bn_layer(
            input=input, num_filters=num_filters, filter_size=1, act='relu', name=name + "_branch2a")
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2b")
        conv2 = self.conv_bn_layer(
            input=conv1, num_filters=num_filters * 4, filter_size=1, act=None, name=name + "_branch2c")

        short = self.shortcut(input, num_filters * 4, stride, is_first=False, name=name + "_branch1")

        return fluid.layers.elementwise_add(x=short, y=conv2, act='relu', name=name + ".add.output.5")

    def basic_block(self, input, num_filters, stride, is_first, name):
        conv0 = self.conv_bn_layer(input=input, num_filters=num_filters, filter_size=3, act='relu', stride=stride,
                                   name=name + "_branch2a")
        conv1 = self.conv_bn_layer(input=conv0, num_filters=num_filters, filter_size=3, act=None,
                                   name=name + "_branch2b")
        short = self.shortcut(input, num_filters, stride, is_first, name=name + "_branch1")
        return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')