rec_r45_visionlan.yml 2.5 KB
Newer Older
A
andyjpaddle 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
Global:
  use_gpu: true
  epoch_num: 8
  log_smooth_window: 200
  print_batch_step: 200
  save_model_dir: ./output/rec/r45_visionlan
  save_epoch_step: 1
  # evaluation is run every 2000 iterations
  eval_batch_step: [0, 2000]
  cal_metric_during_train: True
  pretrained_model:
  checkpoints: 
  save_inference_dir:
  use_visualdl: False
  infer_img: doc/imgs_words/en/word_2.png
  # for data or label process
  character_dict_path:
  max_text_length: &max_text_length 25
  training_step: &training_step LA
  infer_mode: False
  use_space_char: False
  save_res_path: ./output/rec/predicts_visionlan.txt

Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  clip_norm: 20.0
  group_lr: true
  training_step: *training_step
  lr:
    name: Piecewise
    decay_epochs: [6]
    values: [0.0001, 0.00001] 
  regularizer:
    name: 'L2'
    factor: 0

Architecture:
  model_type: rec
  algorithm: VisionLAN
  Transform:
  Backbone:
    name: ResNet45
    strides: [2, 2, 2, 1, 1]
  Head:
    name: VLHead
    n_layers: 3
    n_position: 256
    n_dim: 512
    max_text_length: *max_text_length
    training_step: *training_step

Loss:
  name: VLLoss
  mode: *training_step
  weight_res: 0.5
  weight_mas: 0.5

PostProcess:
  name: VLLabelDecode

Metric:
  name: RecMetric
  is_filter: true


Train:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/ic15_data/
    label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
    transforms:
      - DecodeImage: # load image
          img_mode: RGB
          channel_first: False
      - ABINetRecAug:
      - VLLabelEncode: # Class handling label
      - VLRecResizeImg:
          image_shape: [3, 64, 256]
      - KeepKeys:
          keep_keys: ['image', 'label', 'label_res', 'label_sub', 'label_id', 'length'] # dataloader will return list in this order
  loader:
    shuffle: True
    batch_size_per_card: 220
    drop_last: True
    num_workers: 4

Eval:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/ic15_data
    label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
    transforms:
      - DecodeImage: # load image
          img_mode: RGB
          channel_first: False
      - VLLabelEncode: # Class handling label
      - VLRecResizeImg:
          image_shape: [3, 64, 256]
      - KeepKeys:
          keep_keys: ['image', 'label', 'label_res', 'label_sub', 'label_id', 'length'] # dataloader will return list in this order
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 64
    num_workers: 4