table_postprocess.py 5.7 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle

from .rec_postprocess import AttnLabelDecode


class TableLabelDecode(AttnLabelDecode):
    """  """

    def __init__(self, character_dict_path, **kwargs):
        super(TableLabelDecode, self).__init__(character_dict_path)
        self.td_token = ['<td>', '<td', '<eb></eb>', '<td></td>']

    def __call__(self, preds, batch=None):
        structure_probs = preds['structure_probs']
        bbox_preds = preds['loc_preds']
        if isinstance(structure_probs, paddle.Tensor):
            structure_probs = structure_probs.numpy()
        if isinstance(bbox_preds, paddle.Tensor):
            bbox_preds = bbox_preds.numpy()
        shape_list = batch[-1]
        result = self.decode(structure_probs, bbox_preds, shape_list)
        if len(batch) == 1:  # only contains shape
            return result

        label_decode_result = self.decode_label(batch)
        return result, label_decode_result

    def decode(self, structure_probs, bbox_preds, shape_list):
        """convert text-label into text-index.
        """
        ignored_tokens = self.get_ignored_tokens()
        end_idx = self.dict[self.end_str]

        structure_idx = structure_probs.argmax(axis=2)
        structure_probs = structure_probs.max(axis=2)

        structure_batch_list = []
        bbox_batch_list = []
        batch_size = len(structure_idx)
        for batch_idx in range(batch_size):
            structure_list = []
            bbox_list = []
            score_list = []
            for idx in range(len(structure_idx[batch_idx])):
                char_idx = int(structure_idx[batch_idx][idx])
                if idx > 0 and char_idx == end_idx:
                    break
                if char_idx in ignored_tokens:
                    continue
                text = self.character[char_idx]
                if text in self.td_token:
                    bbox = bbox_preds[batch_idx, idx]
                    bbox = self._bbox_decode(bbox, shape_list[batch_idx])
                    bbox_list.append(bbox)
                structure_list.append(text)
                score_list.append(structure_probs[batch_idx, idx])
            structure_batch_list.append([structure_list, np.mean(score_list)])
            bbox_batch_list.append(np.array(bbox_list))
        result = {
            'bbox_batch_list': bbox_batch_list,
            'structure_batch_list': structure_batch_list,
        }
        return result

    def decode_label(self, batch):
        """convert text-label into text-index.
        """
        structure_idx = batch[1]
        gt_bbox_list = batch[2]
        shape_list = batch[-1]
        ignored_tokens = self.get_ignored_tokens()
        end_idx = self.dict[self.end_str]

        structure_batch_list = []
        bbox_batch_list = []
        batch_size = len(structure_idx)
        for batch_idx in range(batch_size):
            structure_list = []
            bbox_list = []
            for idx in range(len(structure_idx[batch_idx])):
                char_idx = int(structure_idx[batch_idx][idx])
                if idx > 0 and char_idx == end_idx:
                    break
                if char_idx in ignored_tokens:
                    continue
                structure_list.append(self.character[char_idx])

                bbox = gt_bbox_list[batch_idx][idx]
                if bbox.sum() != 0:
                    bbox = self._bbox_decode(bbox, shape_list[batch_idx])
                    bbox_list.append(bbox)
            structure_batch_list.append(structure_list)
            bbox_batch_list.append(bbox_list)
        result = {
            'bbox_batch_list': bbox_batch_list,
            'structure_batch_list': structure_batch_list,
        }
        return result

    def _bbox_decode(self, bbox, shape):
        h, w, ratio_h, ratio_w, pad_h, pad_w = shape
        src_h = h / ratio_h
        src_w = w / ratio_w
        bbox[0::2] *= src_w
        bbox[1::2] *= src_h
        return bbox


class TableMasterLabelDecode(TableLabelDecode):
    """  """

    def __init__(self, character_dict_path, box_shape='ori', **kwargs):
        super(TableMasterLabelDecode, self).__init__(character_dict_path)
        self.box_shape = box_shape
        assert box_shape in [
            'ori', 'pad'
        ], 'The shape used for box normalization must be ori or pad'

    def add_special_char(self, dict_character):
        self.beg_str = '<SOS>'
        self.end_str = '<EOS>'
        self.unknown_str = '<UKN>'
        self.pad_str = '<PAD>'
        dict_character = dict_character
        dict_character = dict_character + [
            self.unknown_str, self.beg_str, self.end_str, self.pad_str
        ]
        return dict_character

    def get_ignored_tokens(self):
        pad_idx = self.dict[self.pad_str]
        start_idx = self.dict[self.beg_str]
        end_idx = self.dict[self.end_str]
        unknown_idx = self.dict[self.unknown_str]
        return [start_idx, end_idx, pad_idx, unknown_idx]

    def _bbox_decode(self, bbox, shape):
        h, w, ratio_h, ratio_w, pad_h, pad_w = shape
        if self.box_shape == 'pad':
            h, w = pad_h, pad_w
        bbox[0::2] *= w
        bbox[1::2] *= h
        bbox[0::2] /= ratio_w
        bbox[1::2] /= ratio_h
        return bbox