det_db_loss.py 2.6 KB
Newer Older
W
WenmuZhou 已提交
1
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
L
LDOUBLEV 已提交
2
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19 20
from paddle import nn

L
LDOUBLEV 已提交
21 22 23
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss


W
WenmuZhou 已提交
24
class DBLoss(nn.Layer):
L
LDOUBLEV 已提交
25 26 27 28 29 30
    """
    Differentiable Binarization (DB) Loss Function
    args:
        param (dict): the super paramter for DB Loss
    """

W
WenmuZhou 已提交
31 32 33 34 35 36 37 38
    def __init__(self,
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 alpha=5,
                 beta=10,
                 ohem_ratio=3,
                 eps=1e-6,
                 **kwargs):
L
LDOUBLEV 已提交
39
        super(DBLoss, self).__init__()
W
WenmuZhou 已提交
40 41 42 43 44 45 46 47
        self.alpha = alpha
        self.beta = beta
        self.dice_loss = DiceLoss(eps=eps)
        self.l1_loss = MaskL1Loss(eps=eps)
        self.bce_loss = BalanceLoss(
            balance_loss=balance_loss,
            main_loss_type=main_loss_type,
            negative_ratio=ohem_ratio)
L
LDOUBLEV 已提交
48

W
WenmuZhou 已提交
49 50 51 52 53 54
    def forward(self, predicts, labels):
        label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = labels[
            1:]
        shrink_maps = predicts[:, 0, :, :]
        threshold_maps = predicts[:, 1, :, :]
        binary_maps = predicts[:, 2, :, :]
L
LDOUBLEV 已提交
55

W
WenmuZhou 已提交
56 57 58 59 60 61
        loss_shrink_maps = self.bce_loss(shrink_maps, label_shrink_map,
                                         label_shrink_mask)
        loss_threshold_maps = self.l1_loss(threshold_maps, label_threshold_map,
                                           label_threshold_mask)
        loss_binary_maps = self.dice_loss(binary_maps, label_shrink_map,
                                          label_shrink_mask)
L
LDOUBLEV 已提交
62 63 64
        loss_shrink_maps = self.alpha * loss_shrink_maps
        loss_threshold_maps = self.beta * loss_threshold_maps

W
WenmuZhou 已提交
65 66 67 68 69 70
        loss_all = loss_shrink_maps + loss_threshold_maps \
                   + loss_binary_maps
        losses = {'loss': loss_all, \
                  "loss_shrink_maps": loss_shrink_maps, \
                  "loss_threshold_maps": loss_threshold_maps, \
                  "loss_binary_maps": loss_binary_maps}
L
LDOUBLEV 已提交
71
        return losses