ocr_rec.cpp 6.8 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>

namespace PaddleOCR {

void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
W
WenmuZhou 已提交
20
                         cv::Mat &img, Classifier &cls) {
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22 23 24 25 26 27 28
  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat crop_img;
  cv::Mat resize_img;

  std::cout << "The predicted text is :" << std::endl;
  int index = 0;
  for (int i = boxes.size() - 1; i >= 0; i--) {
littletomatodonkey's avatar
littletomatodonkey 已提交
29
    crop_img = GetRotateCropImage(srcimg, boxes[i]);
littletomatodonkey's avatar
littletomatodonkey 已提交
30

W
WenmuZhou 已提交
31 32
    crop_img = cls.Run(crop_img);

littletomatodonkey's avatar
littletomatodonkey 已提交
33 34 35 36 37 38 39
    float wh_ratio = float(crop_img.cols) / float(crop_img.rows);

    this->resize_op_.Run(crop_img, resize_img, wh_ratio);

    this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                            this->is_scale_);

littletomatodonkey's avatar
littletomatodonkey 已提交
40
    std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
littletomatodonkey's avatar
littletomatodonkey 已提交
41

littletomatodonkey's avatar
littletomatodonkey 已提交
42
    this->permute_op_.Run(&resize_img, input.data());
littletomatodonkey's avatar
littletomatodonkey 已提交
43

44
    // Inference.
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    if (this->use_zero_copy_run_) {
      auto input_names = this->predictor_->GetInputNames();
      auto input_t = this->predictor_->GetInputTensor(input_names[0]);
      input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
      input_t->copy_from_cpu(input.data());
      this->predictor_->ZeroCopyRun();
    } else {
      paddle::PaddleTensor input_t;
      input_t.shape = {1, 3, resize_img.rows, resize_img.cols};
      input_t.data =
          paddle::PaddleBuf(input.data(), input.size() * sizeof(float));
      input_t.dtype = PaddleDType::FLOAT32;
      std::vector<paddle::PaddleTensor> outputs;
      this->predictor_->Run({input_t}, &outputs, 1);
    }
littletomatodonkey's avatar
littletomatodonkey 已提交
60 61 62 63 64 65

    std::vector<int64_t> rec_idx;
    auto output_names = this->predictor_->GetOutputNames();
    auto output_t = this->predictor_->GetOutputTensor(output_names[0]);
    auto rec_idx_lod = output_t->lod();
    auto shape_out = output_t->shape();
66

littletomatodonkey's avatar
littletomatodonkey 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    int out_num = std::accumulate(shape_out.begin(), shape_out.end(), 1,
                                  std::multiplies<int>());

    rec_idx.resize(out_num);
    output_t->copy_to_cpu(rec_idx.data());

    std::vector<int> pred_idx;
    for (int n = int(rec_idx_lod[0][0]); n < int(rec_idx_lod[0][1]); n++) {
      pred_idx.push_back(int(rec_idx[n]));
    }

    if (pred_idx.size() < 1e-3)
      continue;

    index += 1;
    std::cout << index << "\t";
    for (int n = 0; n < pred_idx.size(); n++) {
      std::cout << label_list_[pred_idx[n]];
    }

    std::vector<float> predict_batch;
    auto output_t_1 = this->predictor_->GetOutputTensor(output_names[1]);

    auto predict_lod = output_t_1->lod();
    auto predict_shape = output_t_1->shape();
    int out_num_1 = std::accumulate(predict_shape.begin(), predict_shape.end(),
                                    1, std::multiplies<int>());

    predict_batch.resize(out_num_1);
    output_t_1->copy_to_cpu(predict_batch.data());

    int argmax_idx;
    int blank = predict_shape[1];
    float score = 0.f;
    int count = 0;
    float max_value = 0.0f;

    for (int n = predict_lod[0][0]; n < predict_lod[0][1] - 1; n++) {
littletomatodonkey's avatar
littletomatodonkey 已提交
105 106
      argmax_idx =
          int(Utility::argmax(&predict_batch[n * predict_shape[1]],
littletomatodonkey's avatar
littletomatodonkey 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120
                              &predict_batch[(n + 1) * predict_shape[1]]));
      max_value =
          float(*std::max_element(&predict_batch[n * predict_shape[1]],
                                  &predict_batch[(n + 1) * predict_shape[1]]));
      if (blank - 1 - argmax_idx > 1e-5) {
        score += max_value;
        count += 1;
      }
    }
    score /= count;
    std::cout << "\tscore: " << score << std::endl;
  }
}

littletomatodonkey's avatar
littletomatodonkey 已提交
121
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
littletomatodonkey's avatar
littletomatodonkey 已提交
122 123 124
  AnalysisConfig config;
  config.SetModel(model_dir + "/model", model_dir + "/params");

littletomatodonkey's avatar
littletomatodonkey 已提交
125 126 127 128
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
littletomatodonkey 已提交
129 130 131
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
    }
littletomatodonkey's avatar
littletomatodonkey 已提交
132 133
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey 已提交
134

littletomatodonkey's avatar
littletomatodonkey 已提交
135
  // false for zero copy tensor
136
  // true for commom tensor
137
  config.SwitchUseFeedFetchOps(!this->use_zero_copy_run_);
littletomatodonkey's avatar
littletomatodonkey 已提交
138
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey 已提交
139
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey 已提交
140 141 142 143

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
littletomatodonkey's avatar
littletomatodonkey 已提交
144
  config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey 已提交
145 146 147 148

  this->predictor_ = CreatePaddlePredictor(config);
}

littletomatodonkey's avatar
littletomatodonkey 已提交
149 150
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
                                           std::vector<std::vector<int>> box) {
littletomatodonkey's avatar
littletomatodonkey 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
  cv::Mat image;
  srcimage.copyTo(image);
  std::vector<std::vector<int>> points = box;

  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));

  cv::Mat img_crop;
  image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

  for (int i = 0; i < points.size(); i++) {
    points[i][0] -= left;
    points[i][1] -= top;
  }

  int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                pow(points[0][1] - points[1][1], 2)));
  int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                 pow(points[0][1] - points[3][1], 2)));

  cv::Point2f pts_std[4];
  pts_std[0] = cv::Point2f(0., 0.);
  pts_std[1] = cv::Point2f(img_crop_width, 0.);
  pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
  pts_std[3] = cv::Point2f(0.f, img_crop_height);

  cv::Point2f pointsf[4];
  pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
  pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
  pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
  pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

  cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

  cv::Mat dst_img;
  cv::warpPerspective(img_crop, dst_img, M,
                      cv::Size(img_crop_width, img_crop_height),
                      cv::BORDER_REPLICATE);

  if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
    cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
    cv::transpose(dst_img, srcCopy);
    cv::flip(srcCopy, srcCopy, 0);
    return srcCopy;
  } else {
    return dst_img;
  }
}

littletomatodonkey's avatar
littletomatodonkey 已提交
204
} // namespace PaddleOCR