det_fce_head.py 3.3 KB
Newer Older
z37757's avatar
z37757 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
from paddle import nn
from paddle import ParamAttr
import paddle.nn.functional as F
from paddle.nn.initializer import Normal
import paddle
from functools import partial


def multi_apply(func, *args, **kwargs):
    """Apply function to a list of arguments.

    Note:
        This function applies the ``func`` to multiple inputs and
        map the multiple outputs of the ``func`` into different
        list. Each list contains the same type of outputs corresponding
        to different inputs.

    Args:
        func (Function): A function that will be applied to a list of
            arguments

    Returns:
        tuple(list): A tuple containing multiple list, each list contains \
            a kind of returned results by the function
    """
    pfunc = partial(func, **kwargs) if kwargs else func
    map_results = map(pfunc, *args)
    return tuple(map(list, zip(*map_results)))


class FCEHead(nn.Layer):
    """The class for implementing FCENet head.
    FCENet(CVPR2021): Fourier Contour Embedding for Arbitrary-shaped Text
    Detection.

    [https://arxiv.org/abs/2104.10442]

    Args:
        in_channels (int): The number of input channels.
        scales (list[int]) : The scale of each layer.
        fourier_degree (int) : The maximum Fourier transform degree k.
    """

    def __init__(self, in_channels, scales, fourier_degree=5):
        super().__init__()
        assert isinstance(in_channels, int)

        self.downsample_ratio = 1.0
        self.in_channels = in_channels
        self.scales = scales
        self.fourier_degree = fourier_degree
        self.out_channels_cls = 4
        self.out_channels_reg = (2 * self.fourier_degree + 1) * 2

        self.out_conv_cls = nn.Conv2D(
            in_channels=self.in_channels,
            out_channels=self.out_channels_cls,
            kernel_size=3,
            stride=1,
            padding=1,
            groups=1,
            weight_attr=ParamAttr(
                name='cls_weights',
                initializer=Normal(
                    mean=paddle.to_tensor(0.), std=paddle.to_tensor(0.01))),
            bias_attr=True)
        self.out_conv_reg = nn.Conv2D(
            in_channels=self.in_channels,
            out_channels=self.out_channels_reg,
            kernel_size=3,
            stride=1,
            padding=1,
            groups=1,
            weight_attr=ParamAttr(
                name='reg_weights',
                initializer=Normal(
                    mean=paddle.to_tensor(0.), std=paddle.to_tensor(0.01))),
            bias_attr=True)

    def forward(self, feats, targets=None):
        cls_res, reg_res = multi_apply(self.forward_single, feats)
        level_num = len(cls_res)
        # import pdb;pdb.set_trace()
        outs = {}

        if not self.training:
            for i in range(level_num):
                tr_pred = F.softmax(cls_res[i][:, 0:2, :, :], axis=1)
                tcl_pred = F.softmax(cls_res[i][:, 2:, :, :], axis=1)
                outs['level_{}'.format(i)] = paddle.concat(
                    [tr_pred, tcl_pred, reg_res[i]], axis=1)
        else:
            preds = [[cls_res[i], reg_res[i]] for i in range(level_num)]
            outs['levels'] = preds
        return outs

    def forward_single(self, x):
        cls_predict = self.out_conv_cls(x)
        reg_predict = self.out_conv_reg(x)
        return cls_predict, reg_predict