table_metric.py 8.2 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11
# Copyright 2020 IBM
# Author: peter.zhong@au1.ibm.com
#
# This is free software; you can redistribute it and/or modify
# it under the terms of the Apache 2.0 License.
#
# This software is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# Apache 2.0 License for more details.

12
from rapidfuzz.distance import Levenshtein
W
WenmuZhou 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
from apted import APTED, Config
from apted.helpers import Tree
from lxml import etree, html
from collections import deque
from .parallel import parallel_process
from tqdm import tqdm


class TableTree(Tree):
    def __init__(self, tag, colspan=None, rowspan=None, content=None, *children):
        self.tag = tag
        self.colspan = colspan
        self.rowspan = rowspan
        self.content = content
        self.children = list(children)

    def bracket(self):
        """Show tree using brackets notation"""
        if self.tag == 'td':
            result = '"tag": %s, "colspan": %d, "rowspan": %d, "text": %s' % \
                     (self.tag, self.colspan, self.rowspan, self.content)
        else:
            result = '"tag": %s' % self.tag
        for child in self.children:
            result += child.bracket()
        return "{{{}}}".format(result)


class CustomConfig(Config):
    def rename(self, node1, node2):
        """Compares attributes of trees"""
        #print(node1.tag)
        if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
            return 1.
        if node1.tag == 'td':
            if node1.content or node2.content:
                #print(node1.content, )
50
                return Levenshtein.normalized_distance(node1.content, node2.content)
W
WenmuZhou 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
        return 0.



class CustomConfig_del_short(Config):
    def rename(self, node1, node2):
        """Compares attributes of trees"""
        if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
            return 1.
        if node1.tag == 'td':
            if node1.content or node2.content:
                #print('before')
                #print(node1.content, node2.content)
                #print('after')
                node1_content = node1.content
                node2_content = node2.content
                if len(node1_content) < 3:
                    node1_content = ['####']
                if len(node2_content) < 3:
                    node2_content = ['####']   
71
                return Levenshtein.normalized_distance(node1_content, node2_content)
W
WenmuZhou 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        return 0.

class CustomConfig_del_block(Config):
    def rename(self, node1, node2):
        """Compares attributes of trees"""
        if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
            return 1.
        if node1.tag == 'td':
            if node1.content or node2.content:
                
                node1_content = node1.content
                node2_content = node2.content
                while ' '  in node1_content:
                    print(node1_content.index(' '))
                    node1_content.pop(node1_content.index(' '))
                while ' ' in node2_content:
                    print(node2_content.index(' '))
                    node2_content.pop(node2_content.index(' '))
90
                return Levenshtein.normalized_distance(node1_content, node2_content)
W
WenmuZhou 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        return 0.

class TEDS(object):
    ''' Tree Edit Distance basead Similarity
    '''

    def __init__(self, structure_only=False, n_jobs=1, ignore_nodes=None):
        assert isinstance(n_jobs, int) and (
            n_jobs >= 1), 'n_jobs must be an integer greather than 1'
        self.structure_only = structure_only
        self.n_jobs = n_jobs
        self.ignore_nodes = ignore_nodes
        self.__tokens__ = []

    def tokenize(self, node):
        ''' Tokenizes table cells
        '''
        self.__tokens__.append('<%s>' % node.tag)
        if node.text is not None:
            self.__tokens__ += list(node.text)
        for n in node.getchildren():
            self.tokenize(n)
        if node.tag != 'unk':
            self.__tokens__.append('</%s>' % node.tag)
        if node.tag != 'td' and node.tail is not None:
            self.__tokens__ += list(node.tail)

    def load_html_tree(self, node, parent=None):
        ''' Converts HTML tree to the format required by apted
        '''
        global __tokens__
        if node.tag == 'td':
            if self.structure_only:
                cell = []
            else:
                self.__tokens__ = []
                self.tokenize(node)
                cell = self.__tokens__[1:-1].copy()
            new_node = TableTree(node.tag,
                                 int(node.attrib.get('colspan', '1')),
                                 int(node.attrib.get('rowspan', '1')),
                                 cell, *deque())
        else:
            new_node = TableTree(node.tag, None, None, None, *deque())
        if parent is not None:
            parent.children.append(new_node)
        if node.tag != 'td':
            for n in node.getchildren():
                self.load_html_tree(n, new_node)
        if parent is None:
            return new_node

    def evaluate(self, pred, true):
        ''' Computes TEDS score between the prediction and the ground truth of a
            given sample
        '''
        if (not pred) or (not true):
            return 0.0
        parser = html.HTMLParser(remove_comments=True, encoding='utf-8')
        pred = html.fromstring(pred, parser=parser)
        true = html.fromstring(true, parser=parser)
        if pred.xpath('body/table') and true.xpath('body/table'):
            pred = pred.xpath('body/table')[0]
            true = true.xpath('body/table')[0]
            if self.ignore_nodes:
                etree.strip_tags(pred, *self.ignore_nodes)
                etree.strip_tags(true, *self.ignore_nodes)
            n_nodes_pred = len(pred.xpath(".//*"))
            n_nodes_true = len(true.xpath(".//*"))
            n_nodes = max(n_nodes_pred, n_nodes_true)
            tree_pred = self.load_html_tree(pred)
            tree_true = self.load_html_tree(true)
            distance = APTED(tree_pred, tree_true,
                             CustomConfig()).compute_edit_distance()
            return 1.0 - (float(distance) / n_nodes)
        else:
            return 0.0

    def batch_evaluate(self, pred_json, true_json):
        ''' Computes TEDS score between the prediction and the ground truth of
            a batch of samples
            @params pred_json: {'FILENAME': 'HTML CODE', ...}
            @params true_json: {'FILENAME': {'html': 'HTML CODE'}, ...}
            @output: {'FILENAME': 'TEDS SCORE', ...}
        '''
        samples = true_json.keys()
        if self.n_jobs == 1:
            scores = [self.evaluate(pred_json.get(
                filename, ''), true_json[filename]['html']) for filename in tqdm(samples)]
        else:
            inputs = [{'pred': pred_json.get(
                filename, ''), 'true': true_json[filename]['html']} for filename in samples]
            scores = parallel_process(
                inputs, self.evaluate, use_kwargs=True, n_jobs=self.n_jobs, front_num=1)
        scores = dict(zip(samples, scores))
        return scores

    def batch_evaluate_html(self, pred_htmls, true_htmls):
        ''' Computes TEDS score between the prediction and the ground truth of
            a batch of samples
        '''
        if self.n_jobs == 1:
            scores = [self.evaluate(pred_html, true_html) for (
                pred_html, true_html) in zip(pred_htmls, true_htmls)]
        else:
            inputs = [{"pred": pred_html, "true": true_html} for(
                pred_html, true_html) in zip(pred_htmls, true_htmls)]

            scores = parallel_process(
                inputs, self.evaluate, use_kwargs=True, n_jobs=self.n_jobs, front_num=1)
        return scores


if __name__ == '__main__':
    import json
    import pprint
    with open('sample_pred.json') as fp:
        pred_json = json.load(fp)
    with open('sample_gt.json') as fp:
        true_json = json.load(fp)
    teds = TEDS(n_jobs=4)
    scores = teds.batch_evaluate(pred_json, true_json)
    pp = pprint.PrettyPrinter()
    pp.pprint(scores)