pruning_and_finetune.py 5.4 KB
Newer Older
Y
yukavio 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import numpy as np
Y
yukavio 已提交
22
import paddle
Y
yukavio 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..', '..', '..'))
sys.path.append(os.path.join(__dir__, '..', '..', '..', 'tools'))

import tools.program as program
from paddle import fluid
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.data.reader_main import reader_main
from ppocr.utils.save_load import init_model
from ppocr.utils.character import CharacterOps
from ppocr.utils.utility import initial_logger
from paddleslim.prune import Pruner, save_model
from paddleslim.analysis import flops
from paddleslim.core.graph_wrapper import *
from paddleslim.prune import load_sensitivities, get_ratios_by_loss, merge_sensitive
logger = initial_logger()

skip_list = [
    'conv10_linear_weights', 'conv11_linear_weights', 'conv12_expand_weights',
    'conv12_linear_weights', 'conv12_se_2_weights', 'conv13_linear_weights',
    'conv2_linear_weights', 'conv4_linear_weights', 'conv5_expand_weights',
    'conv5_linear_weights', 'conv5_se_2_weights', 'conv6_linear_weights',
    'conv7_linear_weights', 'conv8_expand_weights', 'conv8_linear_weights',
    'conv9_expand_weights', 'conv9_linear_weights'
]


def main():
Y
yukavio 已提交
53 54 55 56 57 58
    # Run code with static graph mode.
    try:
        paddle.enable_static()
    except:
        pass

Y
yukavio 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    config = program.load_config(FLAGS.config)
    program.merge_config(FLAGS.opt)
    logger.info(config)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    program.check_gpu(use_gpu)

    alg = config['Global']['algorithm']
    assert alg in ['EAST', 'DB', 'Rosetta', 'CRNN', 'STARNet', 'RARE']
    if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE']:
        config['Global']['char_ops'] = CharacterOps(config['Global'])

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    startup_program = fluid.Program()
    train_program = fluid.Program()
    train_build_outputs = program.build(
        config, train_program, startup_program, mode='train')
    train_loader = train_build_outputs[0]
    train_fetch_name_list = train_build_outputs[1]
    train_fetch_varname_list = train_build_outputs[2]
    train_opt_loss_name = train_build_outputs[3]

    eval_program = fluid.Program()
    eval_build_outputs = program.build(
        config, eval_program, startup_program, mode='eval')
    eval_fetch_name_list = eval_build_outputs[1]
    eval_fetch_varname_list = eval_build_outputs[2]
    eval_program = eval_program.clone(for_test=True)

    train_reader = reader_main(config=config, mode="train")
    train_loader.set_sample_list_generator(train_reader, places=place)

    eval_reader = reader_main(config=config, mode="eval")

    exe = fluid.Executor(place)
    exe.run(startup_program)

    # compile program for multi-devices
    init_model(config, train_program, exe)

    sen = load_sensitivities("sensitivities_0.data")
    for i in skip_list:
Y
yukavio 已提交
102 103
        if i in sen.keys():
            sen.pop(i)
Y
yukavio 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    back_bone_list = ['conv' + str(x) for x in range(1, 5)]
    for i in back_bone_list:
        for key in list(sen.keys()):
            if i + '_' in key:
                sen.pop(key)
    ratios = get_ratios_by_loss(sen, 0.03)
    logger.info("FLOPs before pruning: {}".format(flops(eval_program)))
    pruner = Pruner(criterion='geometry_median')
    print("ratios: {}".format(ratios))
    pruned_val_program, _, _ = pruner.prune(
        eval_program,
        fluid.global_scope(),
        params=ratios.keys(),
        ratios=ratios.values(),
        place=place,
        only_graph=True)

    pruned_program, _, _ = pruner.prune(
        train_program,
        fluid.global_scope(),
        params=ratios.keys(),
        ratios=ratios.values(),
        place=place)
    logger.info("FLOPs after pruning: {}".format(flops(pruned_val_program)))
    train_compile_program = program.create_multi_devices_program(
        pruned_program, train_opt_loss_name)


    train_info_dict = {'compile_program':train_compile_program,\
        'train_program':pruned_program,\
        'reader':train_loader,\
        'fetch_name_list':train_fetch_name_list,\
        'fetch_varname_list':train_fetch_varname_list}

    eval_info_dict = {'program':pruned_val_program,\
        'reader':eval_reader,\
        'fetch_name_list':eval_fetch_name_list,\
        'fetch_varname_list':eval_fetch_varname_list}

    if alg in ['EAST', 'DB']:
        program.train_eval_det_run(
B
baiyfbupt 已提交
145
            config, exe, train_info_dict, eval_info_dict, is_slim="prune")
Y
yukavio 已提交
146 147 148 149 150 151 152 153
    else:
        program.train_eval_rec_run(config, exe, train_info_dict, eval_info_dict)


if __name__ == '__main__':
    parser = program.ArgsParser()
    FLAGS = parser.parse_args()
    main()