models_list.md 7.7 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2
# PP-Structure 系列模型列表

文幕地方's avatar
文幕地方 已提交
3 4 5 6
- [1. 版面分析模型](#1-版面分析模型)
- [2. OCR和表格识别模型](#2-ocr和表格识别模型)
  - [2.1 OCR](#21-ocr)
  - [2.2 表格识别模型](#22-表格识别模型)
littletomatodonkey's avatar
littletomatodonkey 已提交
7
- [3. KIE模型](#3-kie模型)
M
update  
MissPenguin 已提交
8

文幕地方's avatar
文幕地方 已提交
9

M
update  
MissPenguin 已提交
10 11
<a name="1"></a>
## 1. 版面分析模型
文幕地方's avatar
文幕地方 已提交
12

A
an1018 已提交
13 14 15
|模型名称|模型简介|推理模型大小|下载地址|dict path|
| --- | --- | --- | --- | --- |
| picodet_lcnet_x1_0_fgd_layout | 基于PicoDet LCNet_x1_0和FGD蒸馏在PubLayNet 数据集训练的英文版面分析模型,可以划分**文字、标题、表格、图片以及列表**5类区域 | 9.7M | [推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout.pdparams) | [PubLayNet dict](../../ppocr/utils/dict/layout_dict/layout_publaynet_dict.txt) |
16
| ppyolov2_r50vd_dcn_365e_publaynet | 基于PP-YOLOv2在PubLayNet数据集上训练的英文版面分析模型 | 221.0M | [推理模型](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_publaynet.tar) / [训练模型](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_publaynet_pretrained.pdparams) | 同上 |
A
an1018 已提交
17 18
| picodet_lcnet_x1_0_fgd_layout_cdla | CDLA数据集训练的中文版面分析模型,可以划分为**表格、图片、图片标题、表格、表格标题、页眉、脚本、引用、公式**10类区域 | 9.7M | [推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_cdla_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_cdla.pdparams) | [CDLA dict](../../ppocr/utils/dict/layout_dict/layout_cdla_dict.txt) |
| picodet_lcnet_x1_0_fgd_layout_table | 表格数据集训练的版面分析模型,支持中英文文档表格区域的检测 | 9.7M | [推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_table_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_table.pdparams) | [Table dict](../../ppocr/utils/dict/layout_dict/layout_table_dict.txt) |
19 20
| ppyolov2_r50vd_dcn_365e_tableBank_word | 基于PP-YOLOv2在TableBank Word 数据集训练的版面分析模型,支持英文文档表格区域的检测 | 221.0M | [推理模型](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_tableBank_word.tar) | 同上 |
| ppyolov2_r50vd_dcn_365e_tableBank_latex | 基于PP-YOLOv2在TableBank Latex数据集训练的版面分析模型,支持英文文档表格区域的检测 | 221.0M | [推理模型](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_tableBank_latex.tar) | 同上 |
文幕地方's avatar
文幕地方 已提交
21

M
update  
MissPenguin 已提交
22
<a name="2"></a>
A
an1018 已提交
23

文幕地方's avatar
文幕地方 已提交
24 25
## 2. OCR和表格识别模型

M
update  
MissPenguin 已提交
26
<a name="21"></a>
文幕地方's avatar
文幕地方 已提交
27 28
### 2.1 OCR

文幕地方's avatar
文幕地方 已提交
29 30
|模型名称|模型简介|推理模型大小|下载地址|
| --- | --- | --- | --- |
文幕地方's avatar
文幕地方 已提交
31 32
|en_ppocr_mobile_v2.0_table_det|PubTabNet数据集训练的英文表格场景的文字检测|4.7M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_det_train.tar) |
|en_ppocr_mobile_v2.0_table_rec|PubTabNet数据集训练的英文表格场景的文字识别|6.9M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_rec_train.tar) |
文幕地方's avatar
文幕地方 已提交
33 34 35

如需要使用其他OCR模型,可以在 [PP-OCR model_list](../../doc/doc_ch/models_list.md) 下载模型或者使用自己训练好的模型配置到 `det_model_dir`, `rec_model_dir`两个字段即可。

M
update  
MissPenguin 已提交
36
<a name="22"></a>
文幕地方's avatar
add msg  
文幕地方 已提交
37
### 2.2 表格识别模型
文幕地方's avatar
文幕地方 已提交
38 39 40

|模型名称|模型简介|推理模型大小|下载地址|
| --- | --- | --- | --- |
Z
zhoujun 已提交
41 42
|en_ppocr_mobile_v2.0_table_structure|基于TableRec-RARE在PubTabNet数据集上训练的英文表格识别模型|6.8M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) |
|en_ppstructure_mobile_v2.0_SLANet|基于SLANet在PubTabNet数据集上训练的英文表格识别模型|9.2M|[推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_train.tar) |
文幕地方's avatar
文幕地方 已提交
43
|ch_ppstructure_mobile_v2.0_SLANet|基于SLANet的中文表格识别模型|9.3M|[推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_train.tar) |
文幕地方's avatar
文幕地方 已提交
44

M
update  
MissPenguin 已提交
45
<a name="3"></a>
文幕地方's avatar
文幕地方 已提交
46

littletomatodonkey's avatar
littletomatodonkey 已提交
47
## 3. KIE模型
文幕地方's avatar
文幕地方 已提交
48

littletomatodonkey's avatar
littletomatodonkey 已提交
49
在XFUND_zh数据集上,不同模型的精度与V100 GPU上速度信息如下所示。
L
LDOUBLEV 已提交
50

littletomatodonkey's avatar
littletomatodonkey 已提交
51 52 53
|模型名称|模型简介 | 推理模型大小| 精度(hmean) | 预测耗时(ms) | 下载地址|
| --- | --- | --- |--- |--- | --- |
|ser_VI-LayoutXLM_xfund_zh|基于VI-LayoutXLM在xfund中文数据集上训练的SER模型|1.1G| 93.19% | 15.49 | [推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_pretrained.tar) |
文幕地方's avatar
文幕地方 已提交
54
|re_VI-LayoutXLM_xfund_zh|基于VI-LayoutXLM在xfund中文数据集上训练的RE模型|1.1G| 83.92% | 15.49 |[推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_pretrained.tar) |
littletomatodonkey's avatar
littletomatodonkey 已提交
55
|ser_LayoutXLM_xfund_zh|基于LayoutXLM在xfund中文数据集上训练的SER模型|1.4G| 90.38% | 19.49 |[推理模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh.tar) |
文幕地方's avatar
文幕地方 已提交
56
|re_LayoutXLM_xfund_zh|基于LayoutXLM在xfund中文数据集上训练的RE模型|1.4G| 74.83% | 19.49 |[推理模型](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutXLM_xfun_zh_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutXLM_xfun_zh.tar) |
57 58 59
|ser_LayoutLMv2_xfund_zh|基于LayoutLMv2在xfund中文数据集上训练的SER模型|778.0M| 85.44% | 31.46 |[推理模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLMv2_xfun_zh_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLMv2_xfun_zh.tar) |
|re_LayoutLMv2_xfund_zh|基于LayoutLMv2在xfun中文数据集上训练的RE模型|765.0M| 67.77% | 31.46 |[推理模型 coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutLMv2_xfun_zh.tar) |
|ser_LayoutLM_xfund_zh|基于LayoutLM在xfund中文数据集上训练的SER模型|430.0M| 77.31% | - |[推理模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLM_xfun_zh_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLM_xfun_zh.tar) |
littletomatodonkey's avatar
littletomatodonkey 已提交
60 61 62 63 64 65 66 67

* 注:上述预测耗时信息仅包含了inference模型的推理耗时,没有统计预处理与后处理耗时,测试环境为`V100 GPU + CUDA 10.2 + CUDNN 8.1.1 + TRT 7.2.3.4`

在wildreceipt数据集上,SDMGR模型精度与下载地址如下所示。


|模型名称|模型简介|模型大小|精度|下载地址|
| --- | --- | --- |--- | --- |
68
|SDMGR|关键信息提取模型|78.0M| 86.70% | [推理模型 coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/kie/kie_vgg16.tar)|