algorithm_rec_spin_en.md 3.7 KB
Newer Older
xuyang2233's avatar
add pr  
xuyang2233 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition

- [1. Introduction](#1)
- [2. Environment](#2)
- [3. Model Training / Evaluation / Prediction](#3)
    - [3.1 Training](#3-1)
    - [3.2 Evaluation](#3-2)
    - [3.3 Prediction](#3-3)
- [4. Inference and Deployment](#4)
    - [4.1 Python Inference](#4-1)
    - [4.2 C++ Inference](#4-2)
    - [4.3 Serving](#4-3)
    - [4.4 More](#4-4)
- [5. FAQ](#5)

<a name="1"></a>
## 1. Introduction

Paper:
> [SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition](https://arxiv.org/abs/2005.13117)
> Chengwei Zhang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu, Yi Niu, Fei Wu, Futai Zou
> AAAI, 2020

Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets. The algorithm reproduction effect is as follows:

|Model|Backbone|config|Acc|Download link|
| --- | --- | --- | --- | --- |
28
|SPIN|ResNet32|[rec_r32_gaspin_bilstm_att.yml](../../configs/rec/rec_r32_gaspin_bilstm_att.yml)|90.00%|[trained model](https://paddleocr.bj.bcebos.com/contribution/rec_r32_gaspin_bilstm_att.tar) |
xuyang2233's avatar
add pr  
xuyang2233 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112


<a name="2"></a>
## 2. Environment
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.


<a name="3"></a>
## 3. Model Training / Evaluation / Prediction

Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.

Training:

Specifically, after the data preparation is completed, the training can be started. The training command is as follows:

```
#Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml

#Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml
```

Evaluation:

```
# GPU evaluation
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```

Prediction:

```
# The configuration file used for prediction must match the training
python3 tools/infer_rec.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
```

<a name="4"></a>
## 4. Inference and Deployment

<a name="4-1"></a>
### 4.1 Python Inference
First, the model saved during the SPIN text recognition training process is converted into an inference model. you can use the following command to convert:

```
python3 tools/export_model.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy  Global.save_inference_dir=./inference/rec_r32_gaspin_bilstm_att
```

For SPIN text recognition model inference, the following commands can be executed:

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_r32_gaspin_bilstm_att/" --rec_image_shape="3, 32, 100" --rec_algorithm="SPIN" --rec_char_dict_path="/ppocr/utils/dict/spin_dict.txt" --use_space_char=False
```

<a name="4-2"></a>
### 4.2 C++ Inference

Not supported

<a name="4-3"></a>
### 4.3 Serving

Not supported

<a name="4-4"></a>
### 4.4 More

Not supported

<a name="5"></a>
## 5. FAQ


## Citation

```bibtex
@article{2020SPIN,
  title={SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition},
  author={Chengwei Zhang and Yunlu Xu and Zhanzhan Cheng and Shiliang Pu and Yi Niu and Fei Wu and Futai Zou},
  journal={AAAI2020},
  year={2020},
}
```