algorithm_rec_rfl_en.md 5.2 KB
Newer Older
z37757's avatar
z37757 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# RFL

- [1. Introduction](#1)
- [2. Environment](#2)
- [3. Model Training / Evaluation / Prediction](#3)
    - [3.1 Training](#3-1)
    - [3.2 Evaluation](#3-2)
    - [3.3 Prediction](#3-3)
- [4. Inference and Deployment](#4)
    - [4.1 Python Inference](#4-1)
    - [4.2 C++ Inference](#4-2)
    - [4.3 Serving](#4-3)
    - [4.4 More](#4-4)
- [5. FAQ](#5)

<a name="1"></a>
## 1. Introduction

Paper:
> [Reciprocal Feature Learning via Explicit and Implicit Tasks in Scene Text Recognition](https://arxiv.org/abs/2105.06229.pdf)
> Hui Jiang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu, Yi Niu, Wenqi Ren, Fei Wu, and Wenming Tan
> ICDAR, 2021

Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:

|Model|Backbone|config|Acc|Download link|
| --- | --- | --- | --- | --- |
文幕地方's avatar
文幕地方 已提交
28 29
|RFL-CNT|ResNetRFL|[rec_resnet_rfl_visual.yml](../../configs/rec/rec_resnet_rfl_visual.yml)|93.40%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/rec_resnet_rfl_visual_train.tar)|
|RFL-Att|ResNetRFL|[rec_resnet_rfl_att.yml](../../configs/rec/rec_resnet_rfl_att.yml)|88.63%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/rec_resnet_rfl_att_train.tar)|
z37757's avatar
z37757 已提交
30 31 32 33 34 35 36 37 38

<a name="2"></a>
## 2. Environment
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.


<a name="3"></a>
## 3. Model Training / Evaluation / Prediction

z37757's avatar
z37757 已提交
39
PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
z37757's avatar
z37757 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

Training:

Specifically, after the data preparation is completed, the training can be started. The training command is as follows:

```
#step1:train the CNT branch
#Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_resnet_rfl_visual.yml

#Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_resnet_rfl_visual.yml

#step2:joint training of CNT and Att branches
#Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy

#Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_resnet_rfl_att.yml  -o Global.pretrained_model={path/to/weights}/best_accuracy


```

Evaluation:

```
# GPU evaluation
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```

Prediction:

```
# The configuration file used for prediction must match the training
python3 tools/infer_rec.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.infer_img='./doc/imgs_words_en/word_10.png' Global.pretrained_model={path/to/weights}/best_accuracy
```

<a name="4"></a>
## 4. Inference and Deployment

<a name="4-1"></a>
### 4.1 Python Inference
First, the model saved during the RFL text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/contribution/rec_resnet_rfl.tar)) ), you can use the following command to convert:

```
python3 tools/export_model.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy  Global.save_inference_dir=./inference/rec_resnet_rfl_att
```

**Note:**
- If you are training the model on your own dataset and have modified the dictionary file, please pay attention to modify the `character_dict_path` in the configuration file to the modified dictionary file.
- If you modified the input size during training, please modify the `infer_shape` corresponding to NRTR in the `tools/export_model.py` file.

After the conversion is successful, there are three files in the directory:
```
/inference/rec_resnet_rfl_att/
    ├── inference.pdiparams
    ├── inference.pdiparams.info
    └── inference.pdmodel
```


For RFL text recognition model inference, the following commands can be executed:

```
python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words_en/word_10.png' --rec_model_dir='./inference/rec_resnet_rfl_att/' --rec_algorithm='RFL' --rec_image_shape='1,32,100'
```

![](../imgs_words_en/word_10.png)

After executing the command, the prediction result (recognized text and score) of the image above is printed to the screen, an example is as follows:
The result is as follows:
```shell
Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9999927282333374)
```

<a name="4-2"></a>
### 4.2 C++ Inference

Not supported

<a name="4-3"></a>
### 4.3 Serving

Not supported

<a name="4-4"></a>
### 4.4 More

Not supported

<a name="5"></a>
## 5. FAQ

## Citation

```bibtex
@article{2021Reciprocal,
  title     = {Reciprocal Feature Learning via Explicit and Implicit Tasks in Scene Text Recognition},
  author    = {Jiang, H.  and  Xu, Y.  and  Cheng, Z.  and  Pu, S.  and  Niu, Y.  and  Ren, W.  and  Wu, F.  and  Tan, W. },
  booktitle = {ICDAR},
  year      = {2021},
  url       = {https://arxiv.org/abs/2105.06229}
}
```