algorithm_overview.md 10.2 KB
Newer Older
M
MissPenguin 已提交
1
# 前沿算法与模型
qq_25193841's avatar
qq_25193841 已提交
2

littletomatodonkey's avatar
littletomatodonkey 已提交
3
- [1. 两阶段OCR算法](#1)
文幕地方's avatar
文幕地方 已提交
4 5
  - [1.1 文本检测算法](#11)
  - [1.2 文本识别算法](#12)
littletomatodonkey's avatar
littletomatodonkey 已提交
6
- [2. 端到端OCR算法](#2)
文幕地方's avatar
文幕地方 已提交
7
- [3. 表格识别算法](#3)
littletomatodonkey's avatar
littletomatodonkey 已提交
8
- [4. 关键信息抽取算法](#4)
M
MissPenguin 已提交
9

M
MissPenguin 已提交
10
本文给出了PaddleOCR已支持的OCR算法列表,以及每个算法在**英文公开数据集**上的模型和指标,主要用于算法简介和算法性能对比,更多包括中文在内的其他数据集上的模型请参考[PP-OCRv3 系列模型下载](./models_list.md)
qq_25193841's avatar
qq_25193841 已提交
11

M
MissPenguin 已提交
12 13 14 15 16 17
>>
PaddleOCR将**持续新增**支持OCR领域前沿算法与模型,**欢迎广大开发者合作共建,贡献更多算法,合入有奖🎁!具体可查看[社区常规赛](https://github.com/PaddlePaddle/PaddleOCR/issues/4982)。**
>>
新增算法可参考教程:[使用PaddleOCR架构添加新算法](./add_new_algorithm.md)


qq_25193841's avatar
qq_25193841 已提交
18 19
<a name="1"></a>

M
MissPenguin 已提交
20
## 1. 两阶段算法
W
WenmuZhou 已提交
21

qq_25193841's avatar
qq_25193841 已提交
22
<a name="11"></a>
W
WenmuZhou 已提交
23

qq_25193841's avatar
qq_25193841 已提交
24
### 1.1 文本检测算法
W
WenmuZhou 已提交
25

M
MissPenguin 已提交
26
已支持的文本检测算法列表(戳链接获取使用教程):
W
wangjingyeye 已提交
27
- [x]  [DB与DB++](./algorithm_det_db.md)
M
MissPenguin 已提交
28 29 30 31
- [x]  [EAST](./algorithm_det_east.md)
- [x]  [SAST](./algorithm_det_sast.md)
- [x]  [PSENet](./algorithm_det_psenet.md)
- [x]  [FCENet](./algorithm_det_fcenet.md)
W
WenmuZhou 已提交
32 33

在ICDAR2015文本检测公开数据集上,算法效果如下:
M
MissPenguin 已提交
34

W
WenmuZhou 已提交
35
|模型|骨干网络|precision|recall|Hmean|下载链接|
M
MissPenguin 已提交
36
| --- | --- | --- | --- | --- | --- |
文幕地方's avatar
文幕地方 已提交
37 38
|EAST|ResNet50_vd|88.71%|81.36%|84.88%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)|
|EAST|MobileNetV3|78.2%|79.1%|78.65%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar)|
39 40 41
|DB|ResNet50_vd|86.41%|78.72%|82.38%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|DB|MobileNetV3|77.29%|73.08%|75.12%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
qq_25193841's avatar
qq_25193841 已提交
42 43
|PSE|ResNet50_vd|85.81%|79.53%|82.55%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_vd_pse_v2.0_train.tar)|
|PSE|MobileNetV3|82.20%|70.48%|75.89%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_mv3_pse_v2.0_train.tar)|
W
wangjingyeye 已提交
44
|DB++|ResNet50|90.89%|82.66%|86.58%|[合成数据预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams)/[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_db%2B%2B_icdar15_train.tar)|
W
WenmuZhou 已提交
45 46 47 48

在Total-text文本检测公开数据集上,算法效果如下:

|模型|骨干网络|precision|recall|Hmean|下载链接|
M
MissPenguin 已提交
49
| --- | --- | --- | --- | --- | --- |
50
|SAST|ResNet50_vd|89.63%|78.44%|83.66%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
W
WenmuZhou 已提交
51

z37757's avatar
z37757 已提交
52 53 54
在CTW1500文本检测公开数据集上,算法效果如下:

|模型|骨干网络|precision|recall|Hmean|下载链接|
T
Topdu 已提交
55
| --- | --- | --- | --- | --- | --- |  
文幕地方's avatar
文幕地方 已提交
56
|FCE|ResNet50_dcn|88.39%|82.18%|85.27%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar)|
z37757's avatar
z37757 已提交
57

58 59 60
**说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载:
* [百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi)
* [Google Drive下载地址](https://drive.google.com/drive/folders/1ll2-XEVyCQLpJjawLDiRlvo_i4BqHCJe?usp=sharing)
W
WenmuZhou 已提交
61

M
MissPenguin 已提交
62

qq_25193841's avatar
qq_25193841 已提交
63
<a name="12"></a>
W
WenmuZhou 已提交
64

qq_25193841's avatar
qq_25193841 已提交
65
### 1.2 文本识别算法
W
WenmuZhou 已提交
66

M
MissPenguin 已提交
67 68 69 70 71 72 73 74 75
已支持的文本识别算法列表(戳链接获取使用教程):
- [x]  [CRNN](./algorithm_rec_crnn.md)
- [x]  [Rosetta](./algorithm_rec_rosetta.md)
- [x]  [STAR-Net](./algorithm_rec_starnet.md)
- [x]  [RARE](./algorithm_rec_rare.md)
- [x]  [SRN](./algorithm_rec_srn.md)
- [x]  [NRTR](./algorithm_rec_nrtr.md)
- [x]  [SAR](./algorithm_rec_sar.md)
- [x]  [SEED](./algorithm_rec_seed.md)
T
Topdu 已提交
76
- [x]  [SVTR](./algorithm_rec_svtr.md)
T
Topdu 已提交
77
- [x]  [ViTSTR](./algorithm_rec_vitstr.md)
T
Topdu 已提交
78
- [x]  [ABINet](./algorithm_rec_abinet.md)
A
andyjpaddle 已提交
79
- [x]  [VisionLAN](./algorithm_rec_visionlan.md)
xuyang2233's avatar
add pr  
xuyang2233 已提交
80
- [x]  [SPIN](./algorithm_rec_spin.md)
xuyang2233's avatar
xuyang2233 已提交
81
- [x]  [RobustScanner](./algorithm_rec_robustscanner.md)
W
WenmuZhou 已提交
82

qq_25193841's avatar
qq_25193841 已提交
83
参考[DTRB](https://arxiv.org/abs/1904.01906)[3]文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
W
WenmuZhou 已提交
84 85

|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
W
WenmuZhou 已提交
86
|---|---|---|---|---|
文幕地方's avatar
文幕地方 已提交
87 88 89 90 91 92 93 94 95 96 97 98
|Rosetta|Resnet34_vd|79.11%|rec_r34_vd_none_none_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar)|
|Rosetta|MobileNetV3|75.80%|rec_mv3_none_none_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_none_ctc_v2.0_train.tar)|
|CRNN|Resnet34_vd|81.04%|rec_r34_vd_none_bilstm_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
|CRNN|MobileNetV3|77.95%|rec_mv3_none_bilstm_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
|StarNet|Resnet34_vd|82.85%|rec_r34_vd_tps_bilstm_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)|
|StarNet|MobileNetV3|79.28%|rec_mv3_tps_bilstm_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)|
|RARE|Resnet34_vd|83.98%|rec_r34_vd_tps_bilstm_att |[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar)|
|RARE|MobileNetV3|81.76%|rec_mv3_tps_bilstm_att |[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_att_v2.0_train.tar)|
|SRN|Resnet50_vd_fpn| 86.31% | rec_r50fpn_vd_none_srn | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar) |
|NRTR|NRTR_MTB| 84.21% | rec_mtb_nrtr | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar) |
|SAR|Resnet31| 87.20% | rec_r31_sar | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar) |
|SEED|Aster_Resnet| 85.35% | rec_resnet_stn_bilstm_att | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar) |
T
Topdu 已提交
99
|SVTR|SVTR-Tiny| 89.25% | rec_svtr_tiny_none_ctc_en | [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar) |
T
Topdu 已提交
100 101
|ViTSTR|ViTSTR| 79.82% | rec_vitstr_none_ce | [训练模型](https://paddleocr.bj.bcebos.com/rec_vitstr_none_ce_train.tar) |
|ABINet|Resnet45| 90.75% | rec_r45_abinet | [训练模型](https://paddleocr.bj.bcebos.com/rec_r45_abinet_train.tar) |
A
andyjpaddle 已提交
102
|VisionLAN|Resnet45| 90.30% | rec_r45_visionlan | [训练模型](https://paddleocr.bj.bcebos.com/rec_r45_visionlan_train.tar) |
xuyang2233's avatar
xuyang2233 已提交
103
|SPIN|ResNet32| 90.00% | rec_r32_gaspin_bilstm_att | coming soon |
104
|RobustScanner|ResNet31| 87.77% | rec_r31_robustscanner | coming soon |
qq_25193841's avatar
qq_25193841 已提交
105 106 107 108


<a name="2"></a>

M
MissPenguin 已提交
109 110
## 2. 端到端算法

M
MissPenguin 已提交
111 112
已支持的端到端OCR算法列表(戳链接获取使用教程):
- [x]  [PGNet](./algorithm_e2e_pgnet.md)
文幕地方's avatar
add ref  
文幕地方 已提交
113

文幕地方's avatar
文幕地方 已提交
114 115
<a name="3"></a>

文幕地方's avatar
add ref  
文幕地方 已提交
116 117 118 119 120 121 122 123 124
## 3. 表格识别算法

已支持的表格识别算法列表(戳链接获取使用教程):
- [x]  [TableMaster](./algorithm_table_master.md)

在PubTabNet表格识别公开数据集上,算法效果如下:

|模型|骨干网络|配置文件|acc|下载链接|
|---|---|---|---|---|
文幕地方's avatar
fix bug  
文幕地方 已提交
125
|TableMaster|TableResNetExtra|[configs/table/table_master.yml](../../configs/table/table_master.yml)|77.47%|[训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/tablemaster/table_structure_tablemaster_train.tar) / [推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/tablemaster/table_structure_tablemaster_infer.tar)|
littletomatodonkey's avatar
littletomatodonkey 已提交
126 127 128 129 130 131 132



## 4. 关键信息抽取算法

已支持的关键信息抽取算法列表(戳链接获取使用教程):

littletomatodonkey's avatar
littletomatodonkey 已提交
133 134 135 136
- [x]  [VI-LayoutXLM](./algorithm_kie_vi_layoutxlm.md)
- [x]  [LayoutLM](./algorithm_kie_layoutxlm.md)
- [x]  [LayoutLMv2](./algorithm_kie_layoutxlm.md)
- [x]  [LayoutXLM](./algorithm_kie_layoutxlm.md)
littletomatodonkey's avatar
littletomatodonkey 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
- [x]  [SDMGR](././algorithm_kie_sdmgr.md)

在wildreceipt发票公开数据集上,算法复现效果如下:

|模型|骨干网络|配置文件|hmean|下载链接|
| --- | --- | --- | --- | --- |
|SDMGR|VGG6|[configs/kie/sdmgr/kie_unet_sdmgr.yml](../../configs/kie/sdmgr/kie_unet_sdmgr.yml)|86.7%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/kie/kie_vgg16.tar)|


在XFUND_zh公开数据集上,算法效果如下:

|模型|骨干网络|任务|配置文件|hmean|下载链接|
| --- | --- |  --- | --- | --- | --- |
|VI-LayoutXLM| VI-LayoutXLM-base | SER | [ser_vi_layoutxlm_xfund_zh_udml.yml](../../configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh_udml.yml)|**93.19%**|[训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_pretrained.tar)|
|LayoutXLM| LayoutXLM-base | SER | [ser_layoutxlm_xfund_zh.yml](../../configs/kie/layoutlm_series/ser_layoutxlm_xfund_zh.yml)|90.38%|[训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh.tar)|
|LayoutLM| LayoutLM-base | SER | [ser_layoutlm_xfund_zh.yml](../../configs/kie/layoutlm_series/ser_layoutlm_xfund_zh.yml)|77.31%|[训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLM_xfun_zh.tar)|
|LayoutLMv2| LayoutLMv2-base | SER | [ser_layoutlmv2_xfund_zh.yml](../../configs/kie/layoutlm_series/ser_layoutlmv2_xfund_zh.yml)|85.44%|[训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLMv2_xfun_zh.tar)|
|VI-LayoutXLM| VI-LayoutXLM-base | RE | [re_vi_layoutxlm_xfund_zh_udml.yml](../../configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh_udml.yml)|**83.92%**|[训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_pretrained.tar)|
|LayoutXLM| LayoutXLM-base | RE | [re_layoutxlm_xfund_zh.yml](../../configs/kie/layoutlm_series/re_layoutxlm_xfund_zh.yml)|74.83%|[训练模型](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutXLM_xfun_zh.tar)|
|LayoutLMv2| LayoutLMv2-base | RE | [re_layoutlmv2_xfund_zh.yml](../../configs/kie/layoutlm_series/re_layoutlmv2_xfund_zh.yml)|67.77%|[训练模型](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutLMv2_xfun_zh.tar)|