main.cpp 11.6 KB
Newer Older
M
MissPenguin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "glog/logging.h"
#include "omp.h"
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <glog/logging.h>
#include <include/ocr_det.h>
#include <include/ocr_cls.h>
#include <include/ocr_rec.h>
M
MissPenguin 已提交
34
#include <include/utility.h>
M
MissPenguin 已提交
35 36 37 38 39 40 41 42 43 44
#include <sys/stat.h>

#include <gflags/gflags.h>

DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
DEFINE_int32(cpu_math_library_num_threads, 10, "Num of threads with CPU.");
DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU.");
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
M
MissPenguin 已提交
45 46 47
DEFINE_string(precision, "fp32", "Precision be one of fp32/fp16/int8");
DEFINE_bool(benchmark, true, "Whether use benchmark.");
DEFINE_string(save_log_path, "./log_output/", "Save benchmark log path.");
M
MissPenguin 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
// detection related
DEFINE_string(image_dir, "", "Dir of input image.");
DEFINE_string(det_model_dir, "", "Path of det inference model.");
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
DEFINE_double(det_db_box_thresh, 0.5, "Threshold of det_db_box_thresh.");
DEFINE_double(det_db_unclip_ratio, 1.6, "Threshold of det_db_unclip_ratio.");
DEFINE_bool(use_polygon_score, false, "Whether use polygon score.");
DEFINE_bool(visualize, true, "Whether show the detection results.");
// classification related
DEFINE_bool(use_angle_cls, false, "Whether use use_angle_cls.");
DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");
// recognition related
DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary.");


using namespace std;
using namespace cv;
using namespace PaddleOCR;


M
MissPenguin 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
void PrintBenchmarkLog(std::string model_name, 
                       int batch_size, 
                       std::string input_shape,
                       std::vector<double> time_info,
                       int img_num){
  LOG(INFO) << "----------------------- Config info -----------------------";
  LOG(INFO) << "runtime_device: " << (FLAGS_use_gpu ? "gpu" : "cpu");
  LOG(INFO) << "ir_optim: " << "True";
  LOG(INFO) << "enable_memory_optim: " << "True";
  LOG(INFO) << "enable_tensorrt: " << FLAGS_use_tensorrt;
  LOG(INFO) << "enable_mkldnn: " << (FLAGS_use_mkldnn ? "True" : "False");
  LOG(INFO) << "cpu_math_library_num_threads: " << FLAGS_cpu_math_library_num_threads;
  LOG(INFO) << "----------------------- Data info -----------------------";
  LOG(INFO) << "batch_size: " << batch_size;
  LOG(INFO) << "input_shape: " << input_shape;
  LOG(INFO) << "data_num: " << img_num;
  LOG(INFO) << "----------------------- Model info -----------------------";
  LOG(INFO) << "model_name: " << model_name;
  LOG(INFO) << "precision: " << FLAGS_precision;
  LOG(INFO) << "----------------------- Perf info ------------------------";
  LOG(INFO) << "Total time spent(ms): "
            << std::accumulate(time_info.begin(), time_info.end(), 0);
  LOG(INFO) << "preprocess_time(ms): " << time_info[0] / img_num
            << ", inference_time(ms): " << time_info[1] / img_num
            << ", postprocess_time(ms): " << time_info[2] / img_num;
}


M
MissPenguin 已提交
99 100 101 102 103 104 105 106 107 108 109
static bool PathExists(const std::string& path){
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
#endif  // !_WIN32
}


M
MissPenguin 已提交
110 111
int main_det(std::vector<cv::String> cv_all_img_names) {
    std::vector<double> time_info = {0, 0, 0};
M
MissPenguin 已提交
112 113 114 115 116
    DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                   FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads, 
                   FLAGS_use_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
                   FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
                   FLAGS_use_polygon_score, FLAGS_visualize,
M
MissPenguin 已提交
117 118
                   FLAGS_use_tensorrt, FLAGS_precision);
    
M
MissPenguin 已提交
119 120 121 122 123 124 125 126 127
    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }
      std::vector<std::vector<std::vector<int>>> boxes;
M
MissPenguin 已提交
128
      std::vector<double> det_times;
M
MissPenguin 已提交
129

M
MissPenguin 已提交
130 131 132 133 134
      det.Run(srcimg, boxes, &det_times);
  
      time_info[0] += det_times[0];
      time_info[1] += det_times[1];
      time_info[2] += det_times[2];
M
MissPenguin 已提交
135 136
    }
    
M
MissPenguin 已提交
137 138 139
    if (FLAGS_benchmark) {
        PrintBenchmarkLog("det", 1, "dynamic", time_info, cv_all_img_names.size());
    }
M
MissPenguin 已提交
140 141 142 143
    return 0;
}


M
MissPenguin 已提交
144 145
int main_rec(std::vector<cv::String> cv_all_img_names) {
    std::vector<double> time_info = {0, 0, 0};
M
MissPenguin 已提交
146 147 148
    CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                       FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
                       FLAGS_use_mkldnn, FLAGS_char_list_file,
M
MissPenguin 已提交
149
                       FLAGS_use_tensorrt, FLAGS_precision);
M
MissPenguin 已提交
150 151 152 153 154 155 156 157 158 159

    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }

M
MissPenguin 已提交
160 161
      std::vector<double> rec_times;
      rec.Run(srcimg, &rec_times);
M
MissPenguin 已提交
162
        
M
MissPenguin 已提交
163 164 165 166 167 168 169
      time_info[0] += rec_times[0];
      time_info[1] += rec_times[1];
      time_info[2] += rec_times[2];
    }
    
    if (FLAGS_benchmark) {
        PrintBenchmarkLog("rec", 1, "dynamic", time_info, cv_all_img_names.size());
M
MissPenguin 已提交
170 171 172 173 174 175
    }
    
    return 0;
}


M
MissPenguin 已提交
176
int main_system(std::vector<cv::String> cv_all_img_names) {
M
MissPenguin 已提交
177 178 179 180 181
    DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                   FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads, 
                   FLAGS_use_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
                   FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
                   FLAGS_use_polygon_score, FLAGS_visualize,
M
MissPenguin 已提交
182
                   FLAGS_use_tensorrt, FLAGS_precision);
M
MissPenguin 已提交
183 184 185 186 187 188

    Classifier *cls = nullptr;
    if (FLAGS_use_angle_cls) {
      cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                           FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
                           FLAGS_use_mkldnn, FLAGS_cls_thresh,
M
MissPenguin 已提交
189
                           FLAGS_use_tensorrt, FLAGS_precision);
M
MissPenguin 已提交
190 191 192 193 194
    }

    CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                       FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
                       FLAGS_use_mkldnn, FLAGS_char_list_file,
M
MissPenguin 已提交
195
                       FLAGS_use_tensorrt, FLAGS_precision);
M
MissPenguin 已提交
196 197 198 199 200 201 202 203 204 205 206 207

    auto start = std::chrono::system_clock::now();

    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

      cv::Mat srcimg = cv::imread(FLAGS_image_dir, cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }
      std::vector<std::vector<std::vector<int>>> boxes;
M
MissPenguin 已提交
208 209 210 211
      std::vector<double> det_times;
      std::vector<double> rec_times;
        
      det.Run(srcimg, boxes, &det_times);
M
MissPenguin 已提交
212 213 214
    
      cv::Mat crop_img;
      for (int j = 0; j < boxes.size(); j++) {
M
MissPenguin 已提交
215
        crop_img = Utility::GetRotateCropImage(srcimg, boxes[j]);
M
MissPenguin 已提交
216 217 218 219

        if (cls != nullptr) {
          crop_img = cls->Run(crop_img);
        }
M
MissPenguin 已提交
220
        rec.Run(crop_img, &rec_times);
M
MissPenguin 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
      }
        
      auto end = std::chrono::system_clock::now();
      auto duration =
          std::chrono::duration_cast<std::chrono::microseconds>(end - start);
      std::cout << "Cost  "
                << double(duration.count()) *
                       std::chrono::microseconds::period::num /
                       std::chrono::microseconds::period::den
                << "s" << std::endl;
    }
      
    return 0;
}


M
MissPenguin 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
void check_params(char* mode) {
    if (strcmp(mode, "det")==0) {
        if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) {
            std::cout << "Usage[det]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                      << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;      
            exit(1);      
        }
    }
    if (strcmp(mode, "rec")==0) {
        if (FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) {
            std::cout << "Usage[rec]: ./ppocr --rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                      << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;      
            exit(1);
        }
    }
    if (strcmp(mode, "system")==0) {
        if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) ||
           (FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
            std::cout << "Usage[system without angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                        << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                        << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
            std::cout << "Usage[system with angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                        << "--use_angle_cls=true "
                        << "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
                        << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                        << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
            exit(1);      
        }
    }
    if (FLAGS_precision != "fp32" && FLAGS_precision != "fp16" && FLAGS_precision != "int8") {
        cout << "precison should be 'fp32'(default), 'fp16' or 'int8'. " << endl;
        exit(1);
    }
}


M
MissPenguin 已提交
273
int main(int argc, char **argv) {
M
MissPenguin 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287
    if (argc<=1 || (strcmp(argv[1], "det")!=0 && strcmp(argv[1], "rec")!=0 && strcmp(argv[1], "system")!=0)) {
        std::cout << "Please choose one mode of [det, rec, system] !" << std::endl;
        return -1;
    }
    std::cout << "mode: " << argv[1] << endl;

    // Parsing command-line
    google::ParseCommandLineFlags(&argc, &argv, true);
    check_params(argv[1]);
        
    if (!PathExists(FLAGS_image_dir)) {
        std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
        exit(1);      
    }
M
MissPenguin 已提交
288
    
M
MissPenguin 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302
    std::vector<cv::String> cv_all_img_names;
    cv::glob(FLAGS_image_dir, cv_all_img_names);
    std::cout << "total images num: " << cv_all_img_names.size() << endl;
    
    if (strcmp(argv[1], "det")==0) {
        return main_det(cv_all_img_names);
    }
    if (strcmp(argv[1], "rec")==0) {
        return main_rec(cv_all_img_names);
    }    
    if (strcmp(argv[1], "system")==0) {
        return main_system(cv_all_img_names);
    } 

M
MissPenguin 已提交
303
}