train_rec.py 8.2 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import time
import multiprocessing
import numpy as np

# from paddle.fluid.contrib.model_stat import summary


def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect. 
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

from paddle import fluid
from ppocr.utils.utility import create_module
from ppocr.utils.utility import load_config, merge_config
import ppocr.data.rec.reader_main as reader
from ppocr.utils.utility import ArgsParser
from ppocr.utils.character import CharacterOps, cal_predicts_accuracy
from ppocr.utils.check import check_gpu
from ppocr.utils.stats import TrainingStats
from ppocr.utils.checkpoint import load_pretrain, load_checkpoint, save, save_model
from ppocr.utils.eval_utils import eval_run

from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.utility import create_multi_devices_program


def main():
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    char_ops = CharacterOps(config['Global'])
    config['Global']['char_num'] = char_ops.get_char_num()
    print(config)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    rec_model = create_module(config['Architecture']['function'])(params=config)

    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            train_loader, train_outputs = rec_model(mode="train")
            save_var = train_outputs[1]

            if "gradient_clip" in config['Global']:
                gradient_clip = config['Global']['gradient_clip']
                clip = fluid.clip.GradientClipByGlobalNorm(gradient_clip)
                fluid.clip.set_gradient_clip(clip, program=train_prog)

            train_fetch_list = [v.name for v in train_outputs]
            train_loss = train_outputs[0]
            opt_params = config['Optimizer']
            optimizer = create_module(opt_params['function'])(opt_params)
            optimizer.minimize(train_loss)
            global_lr = optimizer._global_learning_rate()
            global_lr.persistable = True
            train_fetch_list.append(global_lr.name)

    train_reader = reader.train_eval_reader(
        config=config, char_ops=char_ops, mode="train")
    train_loader.set_sample_list_generator(train_reader, places=place)

    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            eval_loader, eval_outputs = rec_model(mode="eval")
            eval_fetch_list = [v.name for v in eval_outputs]

    eval_prog = eval_prog.clone(for_test=True)
    exe.run(startup_prog)

    eval_reader = reader.train_eval_reader(
        config=config, char_ops=char_ops, mode="eval")
    eval_loader.set_sample_list_generator(eval_reader, places=place)

    # compile program for multi-devices
    train_compile_program = create_multi_devices_program(train_prog,
                                                         train_loss.name)

    pretrain_weights = config['Global']['pretrain_weights']
    if pretrain_weights is not None:
        load_pretrain(exe, train_prog, pretrain_weights)

    train_batch_id = 0
    train_log_keys = ['loss', 'acc']
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    loss_type = config['Global']['loss_type']
    print_step = config['Global']['print_step']
    eval_step = config['Global']['eval_step']
    save_epoch_step = config['Global']['save_epoch_step']
    save_dir = config['Global']['save_dir']
    train_stats = TrainingStats(log_smooth_window, train_log_keys)
    best_eval_acc = -1
    best_batch_id = 0
    best_epoch = 0
    for epoch in range(epoch_num):
        train_loader.start()
        try:
            while True:
                t1 = time.time()
                train_outs = exe.run(program=train_compile_program,
                                     fetch_list=train_fetch_list,
                                     return_numpy=False)
                loss = np.mean(np.array(train_outs[0]))
                lr = np.mean(np.array(train_outs[-1]))

                preds = np.array(train_outs[1])
                preds_lod = train_outs[1].lod()[0]
                labels = np.array(train_outs[2])
                labels_lod = train_outs[2].lod()[0]

                acc, acc_num, img_num = cal_predicts_accuracy(
                    char_ops, preds, preds_lod, labels, labels_lod)

                t2 = time.time()
                train_batch_elapse = t2 - t1

                stats = {'loss': loss, 'acc': acc}
                train_stats.update(stats)
                if train_batch_id > 0 and train_batch_id % print_step == 0:
                    logs = train_stats.log()
                    strs = 'epoch: {}, iter: {}, lr: {:.6f}, {}, time: {:.3f}'.format(
                        epoch, train_batch_id, lr, logs, train_batch_elapse)
                    logger.info(strs)

                if train_batch_id > 0 and train_batch_id % eval_step == 0:
                    outs = eval_run(exe, eval_prog, eval_loader,
                                    eval_fetch_list, char_ops, train_batch_id,
                                    "eval")
                    eval_acc, acc_num, sample_num = outs
                    if eval_acc > best_eval_acc:
                        best_eval_acc = eval_acc
                        best_batch_id = train_batch_id
                        best_epoch = epoch
                        save_path = save_dir + "/best_accuracy"
                        save_model(train_prog, save_path)

                    strs = 'Test iter: {}, acc:{:.6f}, best_acc:{:.6f}, best_epoch:{}, best_batch_id:{}, sample_num:{}'.format(
                        train_batch_id, eval_acc, best_eval_acc, best_epoch,
                        best_batch_id, sample_num)
                    logger.info(strs)
                train_batch_id += 1

        except fluid.core.EOFException:
            train_loader.reset()

        if epoch > 0 and epoch % save_epoch_step == 0:
            save_path = save_dir + "/iter_epoch_%d" % (epoch)
            save_model(train_prog, save_path)


def test_reader():
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    char_ops = CharacterOps(config['Global'])
    config['Global']['char_num'] = char_ops.get_char_num()
    print(config)
    #     tmp_reader = reader.train_eval_reader(
    #         config=cfg, char_ops=char_ops, mode="train")
    tmp_reader = reader.train_eval_reader(
        config=config, char_ops=char_ops, mode="eval")
    count = 0
    print_count = 0
    import time
    starttime = time.time()
    for data in tmp_reader():
        count += len(data)
        print_count += 1
        if print_count % 10 == 0:
            batch_time = (time.time() - starttime) / print_count
            print("reader:", count, len(data), batch_time)
    print("finish reader:", count)
    print("success")


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "-r",
        "--resume_checkpoint",
        default=None,
        type=str,
        help="Checkpoint path for resuming training.")
    FLAGS = parser.parse_args()
    main()
#     test_reader()