eval_det_iou.py 7.9 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from collections import namedtuple
import numpy as np
from shapely.geometry import Polygon


class DetectionIoUEvaluator(object):
    def __init__(self, iou_constraint=0.5, area_precision_constraint=0.5):
        self.iou_constraint = iou_constraint
        self.area_precision_constraint = area_precision_constraint

    def evaluate_image(self, gt, pred):
        def get_union(pD, pG):
            return Polygon(pD).union(Polygon(pG)).area

        def get_intersection_over_union(pD, pG):
            return get_intersection(pD, pG) / get_union(pD, pG)

        def get_intersection(pD, pG):
            return Polygon(pD).intersection(Polygon(pG)).area

        def compute_ap(confList, matchList, numGtCare):
            correct = 0
            AP = 0
            if len(confList) > 0:
                confList = np.array(confList)
                matchList = np.array(matchList)
                sorted_ind = np.argsort(-confList)
                confList = confList[sorted_ind]
                matchList = matchList[sorted_ind]
                for n in range(len(confList)):
                    match = matchList[n]
                    if match:
                        correct += 1
                        AP += float(correct) / (n + 1)

                if numGtCare > 0:
                    AP /= numGtCare

            return AP

        perSampleMetrics = {}

        matchedSum = 0

        Rectangle = namedtuple('Rectangle', 'xmin ymin xmax ymax')

        numGlobalCareGt = 0
        numGlobalCareDet = 0

        arrGlobalConfidences = []
        arrGlobalMatches = []

        recall = 0
        precision = 0
        hmean = 0

        detMatched = 0

        iouMat = np.empty([1, 1])

        gtPols = []
        detPols = []

        gtPolPoints = []
        detPolPoints = []

        # Array of Ground Truth Polygons' keys marked as don't Care
        gtDontCarePolsNum = []
        # Array of Detected Polygons' matched with a don't Care GT
        detDontCarePolsNum = []

        pairs = []
        detMatchedNums = []

        arrSampleConfidences = []
        arrSampleMatch = []

        evaluationLog = ""

        # print(len(gt))
        for n in range(len(gt)):
            points = gt[n]['points']
            # transcription = gt[n]['text']
            dontCare = gt[n]['ignore']
            points = Polygon(points)
            points = points.buffer(0)
            if not Polygon(points).is_valid or not Polygon(points).is_simple:
                continue

            gtPol = points
            gtPols.append(gtPol)
            gtPolPoints.append(points)
            if dontCare:
                gtDontCarePolsNum.append(len(gtPols) - 1)

        evaluationLog += "GT polygons: " + str(len(gtPols)) + (
            " (" + str(len(gtDontCarePolsNum)) + " don't care)\n"
            if len(gtDontCarePolsNum) > 0 else "\n")

        for n in range(len(pred)):
            points = pred[n]['points']
            points = Polygon(points)
            points = points.buffer(0)
            if not Polygon(points).is_valid or not Polygon(points).is_simple:
                continue

            detPol = points
            detPols.append(detPol)
            detPolPoints.append(points)
            if len(gtDontCarePolsNum) > 0:
                for dontCarePol in gtDontCarePolsNum:
                    dontCarePol = gtPols[dontCarePol]
                    intersected_area = get_intersection(dontCarePol, detPol)
                    pdDimensions = Polygon(detPol).area
                    precision = 0 if pdDimensions == 0 else intersected_area / pdDimensions
                    if (precision > self.area_precision_constraint):
                        detDontCarePolsNum.append(len(detPols) - 1)
                        break

        evaluationLog += "DET polygons: " + str(len(detPols)) + (
            " (" + str(len(detDontCarePolsNum)) + " don't care)\n"
            if len(detDontCarePolsNum) > 0 else "\n")

        if len(gtPols) > 0 and len(detPols) > 0:
            # Calculate IoU and precision matrixs
            outputShape = [len(gtPols), len(detPols)]
            iouMat = np.empty(outputShape)
            gtRectMat = np.zeros(len(gtPols), np.int8)
            detRectMat = np.zeros(len(detPols), np.int8)
            for gtNum in range(len(gtPols)):
                for detNum in range(len(detPols)):
                    pG = gtPols[gtNum]
                    pD = detPols[detNum]
                    iouMat[gtNum, detNum] = get_intersection_over_union(pD, pG)

            for gtNum in range(len(gtPols)):
                for detNum in range(len(detPols)):
                    if gtRectMat[gtNum] == 0 and detRectMat[
                            detNum] == 0 and gtNum not in gtDontCarePolsNum and detNum not in detDontCarePolsNum:
                        if iouMat[gtNum, detNum] > self.iou_constraint:
                            gtRectMat[gtNum] = 1
                            detRectMat[detNum] = 1
                            detMatched += 1
                            pairs.append({'gt': gtNum, 'det': detNum})
                            detMatchedNums.append(detNum)
                            evaluationLog += "Match GT #" + \
                                str(gtNum) + " with Det #" + str(detNum) + "\n"

        numGtCare = (len(gtPols) - len(gtDontCarePolsNum))
        numDetCare = (len(detPols) - len(detDontCarePolsNum))
        if numGtCare == 0:
            recall = float(1)
            precision = float(0) if numDetCare > 0 else float(1)
        else:
            recall = float(detMatched) / numGtCare
            precision = 0 if numDetCare == 0 else float(detMatched) / numDetCare

        hmean = 0 if (precision + recall) == 0 else 2.0 * \
            precision * recall / (precision + recall)

        matchedSum += detMatched
        numGlobalCareGt += numGtCare
        numGlobalCareDet += numDetCare

        perSampleMetrics = {
            'precision': precision,
            'recall': recall,
            'hmean': hmean,
            'pairs': pairs,
            'iouMat': [] if len(detPols) > 100 else iouMat.tolist(),
            'gtPolPoints': gtPolPoints,
            'detPolPoints': detPolPoints,
            'gtCare': numGtCare,
            'detCare': numDetCare,
            'gtDontCare': gtDontCarePolsNum,
            'detDontCare': detDontCarePolsNum,
            'detMatched': detMatched,
            'evaluationLog': evaluationLog
        }

        return perSampleMetrics

    def combine_results(self, results):
        numGlobalCareGt = 0
        numGlobalCareDet = 0
        matchedSum = 0
        for result in results:
            numGlobalCareGt += result['gtCare']
            numGlobalCareDet += result['detCare']
            matchedSum += result['detMatched']

        methodRecall = 0 if numGlobalCareGt == 0 else float(
            matchedSum) / numGlobalCareGt
        methodPrecision = 0 if numGlobalCareDet == 0 else float(
            matchedSum) / numGlobalCareDet
        methodHmean = 0 if methodRecall + methodPrecision == 0 else 2 * \
            methodRecall * methodPrecision / (methodRecall + methodPrecision)
        # print(methodRecall, methodPrecision, methodHmean)
        # sys.exit(-1)
        methodMetrics = {
            'precision': methodPrecision,
            'recall': methodRecall,
            'hmean': methodHmean
        }

        return methodMetrics


if __name__ == '__main__':
    evaluator = DetectionIoUEvaluator()
    gts = [[{
        'points': [(0, 0), (1, 0), (1, 1), (0, 1)],
        'text': 1234,
        'ignore': False,
    }, {
        'points': [(2, 2), (3, 2), (3, 3), (2, 3)],
        'text': 5678,
        'ignore': False,
    }]]
    preds = [[{
        'points': [(0.1, 0.1), (1, 0), (1, 1), (0, 1)],
        'text': 123,
        'ignore': False,
    }]]
    results = []
    for gt, pred in zip(gts, preds):
        results.append(evaluator.evaluate_image(gt, pred))
    metrics = evaluator.combine_results(results)
    print(metrics)