export_prune_model.py 2.4 KB
Newer Older
Y
yukavio 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..', '..', '..'))
sys.path.append(os.path.join(__dir__, '..', '..', '..', 'tools'))

import program
Y
yukavio 已提交
27
import paddle
Y
yukavio 已提交
28 29 30 31 32 33 34 35
from paddle import fluid
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.save_load import init_model
from paddleslim.prune import load_model


def main():
Y
yukavio 已提交
36 37 38 39 40 41
    # Run code with static graph mode.
    try:
        paddle.enable_static()
    except:
        pass

Y
yukavio 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    startup_prog, eval_program, place, config, _ = program.preprocess()

    feeded_var_names, target_vars, fetches_var_name = program.build_export(
        config, eval_program, startup_prog)
    eval_program = eval_program.clone(for_test=True)
    exe = fluid.Executor(place)
    exe.run(startup_prog)

    if config['Global']['checkpoints'] is not None:
        path = config['Global']['checkpoints']
    else:
        path = config['Global']['pretrain_weights']

    load_model(exe, eval_program, path)

    save_inference_dir = config['Global']['save_inference_dir']
    if not os.path.exists(save_inference_dir):
        os.makedirs(save_inference_dir)
    fluid.io.save_inference_model(
        dirname=save_inference_dir,
        feeded_var_names=feeded_var_names,
        main_program=eval_program,
        target_vars=target_vars,
        executor=exe,
        model_filename='model',
        params_filename='params')
    print("inference model saved in {}/model and {}/params".format(
        save_inference_dir, save_inference_dir))
    print("save success, output_name_list:", fetches_var_name)


if __name__ == '__main__':
    main()