base_model.py 3.5 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
W
WenmuZhou 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import nn
18
from ppocr.modeling.transforms import build_transform
W
WenmuZhou 已提交
19 20 21 22
from ppocr.modeling.backbones import build_backbone
from ppocr.modeling.necks import build_neck
from ppocr.modeling.heads import build_head

D
dyning 已提交
23
__all__ = ['BaseModel']
W
WenmuZhou 已提交
24

W
WenmuZhou 已提交
25

D
dyning 已提交
26
class BaseModel(nn.Layer):
W
WenmuZhou 已提交
27 28
    def __init__(self, config):
        """
D
dyning 已提交
29
        the module for OCR.
W
WenmuZhou 已提交
30 31 32
        args:
            config (dict): the super parameters for module.
        """
D
dyning 已提交
33
        super(BaseModel, self).__init__()
W
WenmuZhou 已提交
34
        in_channels = config.get('in_channels', 3)
D
dyning 已提交
35
        model_type = config['model_type']
W
WenmuZhou 已提交
36 37 38
        # build transfrom,
        # for rec, transfrom can be TPS,None
        # for det and cls, transfrom shoule to be None,
D
dyning 已提交
39
        # if you make model differently, you can use transfrom in det and cls
W
WenmuZhou 已提交
40 41 42 43 44 45 46 47 48 49
        if 'Transform' not in config or config['Transform'] is None:
            self.use_transform = False
        else:
            self.use_transform = True
            config['Transform']['in_channels'] = in_channels
            self.transform = build_transform(config['Transform'])
            in_channels = self.transform.out_channels

        # build backbone, backbone is need for del, rec and cls
        config["Backbone"]['in_channels'] = in_channels
D
dyning 已提交
50
        self.backbone = build_backbone(config["Backbone"], model_type)
W
WenmuZhou 已提交
51
        in_channels = self.backbone.out_channels
W
WenmuZhou 已提交
52

W
WenmuZhou 已提交
53 54 55 56 57 58 59 60 61 62 63
        # build neck
        # for rec, neck can be cnn,rnn or reshape(None)
        # for det, neck can be FPN, BIFPN and so on.
        # for cls, neck should be none
        if 'Neck' not in config or config['Neck'] is None:
            self.use_neck = False
        else:
            self.use_neck = True
            config['Neck']['in_channels'] = in_channels
            self.neck = build_neck(config['Neck'])
            in_channels = self.neck.out_channels
W
WenmuZhou 已提交
64

W
WenmuZhou 已提交
65
        # # build head, head is need for det, rec and cls
66 67 68 69 70 71
        if 'Head' not in config or config['Head'] is None:
            self.use_head = False
        else:
            self.use_head = True
            config["Head"]['in_channels'] = in_channels
            self.head = build_head(config["Head"])
W
WenmuZhou 已提交
72

73 74
        self.return_all_feats = config.get("return_all_feats", False)

T
tink2123 已提交
75
    def forward(self, x, data=None):
76
        y = dict()
W
WenmuZhou 已提交
77 78 79
        if self.use_transform:
            x = self.transform(x)
        x = self.backbone(x)
80
        y["backbone_out"] = x
W
WenmuZhou 已提交
81 82
        if self.use_neck:
            x = self.neck(x)
83
        y["neck_out"] = x
84 85
        if self.use_head:
            x = self.head(x, targets=data)
A
andyjpaddle 已提交
86 87 88 89 90
        # for multi head, save ctc neck out for udml
        if isinstance(x, dict) and 'ctc_neck' in x.keys():
            y["neck_out"] = x["ctc_neck"]
            y["head_out"] = x
        elif isinstance(x, dict):
L
LDOUBLEV 已提交
91
            y.update(x)
T
tink2123 已提交
92
        else:
L
LDOUBLEV 已提交
93
            y["head_out"] = x
94 95 96 97
        if self.return_all_feats:
            return y
        else:
            return x