quant.py 6.6 KB
Newer Older
B
baiyfbupt 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
sys.path.append(
    os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))


def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect.
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

import tools.program as program
from paddle import fluid
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.data.reader_main import reader_main
from ppocr.utils.save_load import init_model
from paddle.fluid.contrib.model_stat import summary

# quant dependencies
import paddle
import paddle.fluid as fluid
from paddleslim.quant import quant_aware, convert
from paddle.fluid.layer_helper import LayerHelper


def main():
    train_build_outputs = program.build(
        config, train_program, startup_program, mode='train')
    train_loader = train_build_outputs[0]
    train_fetch_name_list = train_build_outputs[1]
    train_fetch_varname_list = train_build_outputs[2]
    train_opt_loss_name = train_build_outputs[3]
    model_average = train_build_outputs[-1]

    eval_program = fluid.Program()
    eval_build_outputs = program.build(
        config, eval_program, startup_program, mode='eval')
    eval_fetch_name_list = eval_build_outputs[1]
    eval_fetch_varname_list = eval_build_outputs[2]
    eval_program = eval_program.clone(for_test=True)

    train_reader = reader_main(config=config, mode="train")
    train_loader.set_sample_list_generator(train_reader, places=place)

    eval_reader = reader_main(config=config, mode="eval")

    exe = fluid.Executor(place)
    exe.run(startup_program)

    def pact(x, name=None):
        helper = LayerHelper("pact", **locals())
        dtype = 'float32'
        init_thres = 20
        u_param_attr = fluid.ParamAttr(
            name=x.name + '_pact',
            initializer=fluid.initializer.ConstantInitializer(value=init_thres),
            regularizer=fluid.regularizer.L2Decay(0.0001),
            learning_rate=1)
        u_param = helper.create_parameter(
            attr=u_param_attr, shape=[1], dtype=dtype)
        x = fluid.layers.elementwise_sub(
            x, fluid.layers.relu(fluid.layers.elementwise_sub(x, u_param)))
        x = fluid.layers.elementwise_add(
            x, fluid.layers.relu(fluid.layers.elementwise_sub(-u_param, x)))
        return x

    def get_optimizer():
        return fluid.optimizer.AdamOptimizer(0.001)

    # 1. quantization configs
    quant_config = {
        # weight quantize type, default is 'channel_wise_abs_max'
        'weight_quantize_type': 'channel_wise_abs_max',
        # activation quantize type, default is 'moving_average_abs_max'
        'activation_quantize_type': 'moving_average_abs_max',
        # weight quantize bit num, default is 8
        'weight_bits': 8,
        # activation quantize bit num, default is 8
        'activation_bits': 8,
        # ops of name_scope in not_quant_pattern list, will not be quantized
        'not_quant_pattern': ['skip_quant'],
        # ops of type in quantize_op_types, will be quantized
        'quantize_op_types': ['conv2d', 'depthwise_conv2d', 'mul'],
        # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
        'dtype': 'int8',
        # window size for 'range_abs_max' quantization. defaulf is 10000
        'window_size': 10000,
        # The decay coefficient of moving average, default is 0.9
        'moving_rate': 0.9,
    }

    # 2. quantization transform programs (training aware)
    #    Make some quantization transforms in the graph before training and testing.
    #    According to the weight and activation quantization type, the graph will be added
    #    some fake quantize operators and fake dequantize operators.
    act_preprocess_func = pact
    optimizer_func = get_optimizer
    executor = exe

    eval_program = quant_aware(
        eval_program,
        place,
        quant_config,
        scope=None,
        act_preprocess_func=act_preprocess_func,
        optimizer_func=optimizer_func,
        executor=executor,
        for_test=True)
    quant_train_program = quant_aware(
        train_program,
        place,
        quant_config,
        scope=None,
        act_preprocess_func=act_preprocess_func,
        optimizer_func=optimizer_func,
        executor=executor,
        for_test=False,
        return_program=True)

    # compile program for multi-devices
    train_compile_program = program.create_multi_devices_program(
        quant_train_program, train_opt_loss_name, for_quant=True)

    # dump mode structure
    if config['Global']['debug']:
        if train_alg_type == 'rec' and 'attention' in config['Global'][
                'loss_type']:
            logger.warning('Does not suport dump attention...')
        else:
            summary(quant_train_program)

    init_model(config, quant_train_program, exe)

    train_info_dict = {'compile_program':train_compile_program,\
        'train_program':quant_train_program,\
        'reader':train_loader,\
        'fetch_name_list':train_fetch_name_list,\
        'fetch_varname_list':train_fetch_varname_list,\
        'model_average': model_average}

    eval_info_dict = {'program':eval_program,\
        'reader':eval_reader,\
        'fetch_name_list':eval_fetch_name_list,\
        'fetch_varname_list':eval_fetch_varname_list}

    if train_alg_type == 'det':
        program.train_eval_det_run(config, exe, train_info_dict, eval_info_dict)
    else:
        program.train_eval_rec_run(config, exe, train_info_dict, eval_info_dict)


if __name__ == '__main__':
    startup_program, train_program, place, config, train_alg_type = program.preprocess(
    )
    main()