algorithm_rec_srn.md 3.6 KB
Newer Older
A
andyjpaddle 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# SRN

- [1. 算法简介](#1)
- [2. 环境配置](#2)
- [3. 模型训练、评估、预测](#3)
    - [3.1 训练](#3-1)
    - [3.2 评估](#3-2)
    - [3.3 预测](#3-3)
- [4. 推理部署](#4)
    - [4.1 Python推理](#4-1)
    - [4.2 C++推理](#4-2)
    - [4.3 Serving服务化部署](#4-3)
    - [4.4 更多推理部署](#4-4)
- [5. FAQ](#5)

<a name="1"></a>
## 1. 算法简介

论文信息:
> [Towards Accurate Scene Text Recognition with Semantic Reasoning Networks](https://arxiv.org/abs/2003.12294#)
> Deli Yu, Xuan Li, Chengquan Zhang, Junyu Han, Jingtuo Liu, Errui Ding
> CVPR,2020

使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法复现效果如下:

|模型|骨干网络|配置文件|Acc|下载链接|
A
andyjpaddle 已提交
27
| --- | --- | --- | --- | --- |
A
andyjpaddle 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|SRN|Resnet50_vd_fpn|[rec_r50_fpn_srn.yml](../../configs/rec/rec_r50_fpn_srn.yml)|86.31%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar)|


<a name="2"></a>
## 2. 环境配置
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。


<a name="3"></a>
## 3. 模型训练、评估、预测

请参考[文本识别教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。

训练

具体地,在完成数据准备后,便可以启动训练,训练命令如下:

```
#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/rec_r50_fpn_srn.yml

#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_r50_fpn_srn.yml
```

评估

```
# GPU 评估, Global.pretrained_model 为待测权重
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r50_fpn_srn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```

预测:

```
# 预测使用的配置文件必须与训练一致
python3 tools/infer_rec.py -c configs/rec/rec_r50_fpn_srn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
```

<a name="4"></a>
## 4. 推理部署

<a name="4-1"></a>
### 4.1 Python推理
首先将SRN文本识别训练过程中保存的模型,转换成inference model。( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar) ),可以使用如下命令进行转换:

```
python3 tools/export_model.py -c configs/rec/rec_r50_fpn_srn.yml -o Global.pretrained_model=./rec_r50_vd_srn_train/best_accuracy  Global.save_inference_dir=./inference/rec_srn
```

SRN文本识别模型推理,可以执行如下命令:

```
X
xiaoting 已提交
81
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_srn/" --rec_image_shape="1,64,256"  --rec_algorithm="SRN" --rec_char_dict_path=./ppocr/utils/ic15_dict.txt  --use_space_char=False
A
andyjpaddle 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
```

<a name="4-2"></a>
### 4.2 C++推理

由于C++预处理后处理还未支持SRN,所以暂未支持

<a name="4-3"></a>
### 4.3 Serving服务化部署

暂不支持

<a name="4-4"></a>
### 4.4 更多推理部署

暂不支持

<a name="5"></a>
## 5. FAQ


## 引用

```bibtex
@article{Yu2020TowardsAS,
  title={Towards Accurate Scene Text Recognition With Semantic Reasoning Networks},
  author={Deli Yu and Xuan Li and Chengquan Zhang and Junyu Han and Jingtuo Liu and Errui Ding},
  journal={2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2020},
  pages={12110-12119}
}
```