README.md 21.9 KB
Newer Older
A
an1018 已提交
1 2
English | [简体中文](README_ch.md)

littletomatodonkey's avatar
fix  
littletomatodonkey 已提交
3 4
# Layout analysis

A
an1018 已提交
5 6
- [1. Introduction](#1-Introduction)
- [2. Install](#2-Install)
littletomatodonkey's avatar
fix  
littletomatodonkey 已提交
7 8 9 10 11 12
  - [2.1 Install PaddlePaddle](#21-Install-paddlepaddle)
  - [2.2 Install PaddleDetection](#22-Install-paddledetection)
- [3. Data preparation](#3-Data-preparation)
  - [3.1 English data set](#31-English-data-set)
  - [3.2 More datasets](#32-More-datasets)
- [4. Start training](#4-Start-training)
A
an1018 已提交
13
  - [4.1 Train](#41-Train)
littletomatodonkey's avatar
fix  
littletomatodonkey 已提交
14 15 16 17 18 19 20
  - [4.2 FGD Distillation training](#42-FGD-Distillation-training)
- [5. Model evaluation and prediction](#5-Model-evaluation-and-prediction)
  - [5.1 Indicator evaluation](#51-Indicator-evaluation)
  - [5.2 Test layout analysis results](#52-Test-layout-analysis-results)
- [6 Model export and inference](#6-Model-export-and-inference)
  - [6.1 Model export](#61-Model-export)
  - [6.2 Model inference](#62-Model-inference)
A
an1018 已提交
21 22 23 24


## 1. Introduction

A
an1018 已提交
25
Layout analysis refers to the regional division of documents in the form of pictures and the positioning of key areas, such as text, title, table, picture, etc. The layout analysis algorithm is based on the lightweight model PP-picodet of [PaddleDetection]( https://github.com/PaddlePaddle/PaddleDetection )
A
an1018 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

<div align="center">
    <img src="../docs/layout/layout.png" width="800">
</div>



## 2. Install

### 2.1. Install PaddlePaddle

- **(1) Install PaddlePaddle**

```bash
python3 -m pip install --upgrade pip

# GPU Install
A
an1018 已提交
43
python3 -m pip install "paddlepaddle-gpu>=2.3" -i https://mirror.baidu.com/pypi/simple
A
an1018 已提交
44 45

# CPU Install
A
an1018 已提交
46
python3 -m pip install "paddlepaddle>=2.3" -i https://mirror.baidu.com/pypi/simple
A
an1018 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
```
For more requirements, please refer to the instructions in the [Install file](https://www.paddlepaddle.org.cn/install/quick)

### 2.2. Install PaddleDetection

- **(1)Download PaddleDetection Source code**

```bash
git clone https://github.com/PaddlePaddle/PaddleDetection.git
```

- **(2)Install third-party libraries**

```bash
cd PaddleDetection
python3 -m pip install -r requirements.txt
```

## 3. Data preparation

If you want to experience the prediction process directly, you can skip data preparation and download the pre-training model.

### 3.1. English data set

Download document analysis data set [PubLayNet](https://developer.ibm.com/exchanges/data/all/publaynet/)(Dataset 96G),contains 5 classes:`{0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"}`

```
# Download data
wget https://dax-cdn.cdn.appdomain.cloud/dax-publaynet/1.0.0/publaynet.tar.gz
# Decompress data
tar -xvf publaynet.tar.gz
```

Uncompressed **directory structure:**

```
|-publaynet
  |- test
     |- PMC1277013_00004.jpg
     |- PMC1291385_00002.jpg
     | ...
  |- train.json
  |- train
     |- PMC1291385_00002.jpg
     |- PMC1277013_00004.jpg
     | ...
  |- val.json
  |- val
     |- PMC538274_00004.jpg
     |- PMC539300_00004.jpg
     | ...
```

**data distribution:**

| File or Folder | Description    | num     |
| :------------- | :------------- | ------- |
| `train/`       | Training set pictures     | 335,703 |
| `val/`         | Verification set pictures     | 11,245  |
| `test/`        | Test set pictures     | 11,405  |
| `train.json`   | Training set annotation files | -       |
| `val.json`     | Validation set dimension files | -       |

A
an1018 已提交
110
**Data Annotation**
A
an1018 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

The JSON file contains the annotations of all images, and the data is stored in a dictionary nested manner.Contains the following keys:

- info,represents the dimension file info。

- licenses,represents the dimension file licenses。

- images,represents the list of image information in the annotation file,each element is the information of an image。The information of one of the images is as follows:

  ```
  {
      'file_name': 'PMC4055390_00006.jpg',    # file_name
      'height': 601,                      # image height
      'width': 792,                       # image width
      'id': 341427                        # image id
  }
  ```

- annotations, represents the list of annotation information of the target object in the annotation file,each element is the annotation information of a target object。The following is the annotation information of one of the target objects:

  ```
  {

      'segmentation':             # Segmentation annotation of objects
      'area': 60518.099043117836, # Area of object
      'iscrowd': 0,               # iscrowd
      'image_id': 341427,         # image id
      'bbox': [50.58, 490.86, 240.15, 252.16], # bbox [x1,y1,w,h]
      'category_id': 1,           # category_id
      'id': 3322348               # image id
  }
  ```

### 3.2. More datasets

A
an1018 已提交
146
We provide CDLA(Chinese layout analysis), TableBank(Table layout analysis)etc. data set download links,process to the JSON format of the above annotation file,that is, the training can be conducted in the same way。
A
an1018 已提交
147 148 149 150 151 152

| dataset                                                      | 简介                                                         |
| ------------------------------------------------------------ | ------------------------------------------------------------ |
| [cTDaR2019_cTDaR](https://cndplab-founder.github.io/cTDaR2019/) | For form detection (TRACKA) and form identification (TRACKB).Image types include historical data sets (beginning with cTDaR_t0, such as CTDAR_T00872.jpg) and modern data sets (beginning with cTDaR_t1, CTDAR_T10482.jpg). |
| [IIIT-AR-13K](http://cvit.iiit.ac.in/usodi/iiitar13k.php)    | Data sets constructed by manually annotating figures or pages from publicly available annual reports, containing 5 categories:table, figure, natural image, logo, and signature. |
| [TableBank](https://github.com/doc-analysis/TableBank)       | For table detection and recognition of large datasets, including Word and Latex document formats |
A
an1018 已提交
153 154
| [CDLA](https://github.com/buptlihang/CDLA)                   | Chinese document layout analysis data set, for Chinese literature (paper) scenarios, including 10 categories:Table, Figure, Figure caption, Table, Table caption, Header, Footer, Reference, Equation |
| [DocBank](https://github.com/doc-analysis/DocBank)           | Large-scale dataset (500K document pages) constructed using weakly supervised methods for document layout analysis, containing 12 categories:Author, Caption, Date, Equation, Figure, Footer, List, Paragraph, Reference, Section, Table, Title |
A
an1018 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171


## 4. Start training

Training scripts, evaluation scripts, and prediction scripts are provided, and the PubLayNet pre-training model is used as an example in this section.

If you do not want training and directly experience the following process of model evaluation, prediction, motion to static, and inference, you can download the provided pre-trained model (PubLayNet dataset) and skip this part.

```
mkdir pretrained_model
cd pretrained_model
# Download PubLayNet pre-training model(Direct experience model evaluates, predicts, and turns static)
wget https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout.pdparams
# Download the PubLaynet inference model(Direct experience model reasoning)
wget https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_infer.tar
```

A
an1018 已提交
172
If the test image is Chinese, the pre-trained model of Chinese CDLA dataset can be downloaded to identify 10 types of document regions:Table, Figure, Figure caption, Table, Table caption, Header, Footer, Reference, Equation,Download the training model and inference model of Model 'picodet_lcnet_x1_0_fgd_layout_cdla' in [layout analysis model](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppstructure/docs/models_list.md)。If only the table area in the image is detected, you can download the pre-trained model of the table dataset, and download the training model and inference model of the 'picodet_LCnet_x1_0_FGd_layout_table' model in [Layout Analysis model](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppstructure/docs/models_list.md)
A
an1018 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

### 4.1. Train

Train:

* Modify Profile

If you want to train your own data set, you need to modify the data configuration and the number of categories in the configuration file.


Using 'configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml' as an example, the change is as follows:

```yaml
metric: COCO
# Number of categories
num_classes: 5

TrainDataset:
  !COCODataSet
    # Modify to your own training data directory
    image_dir: train
    # Modify to your own training data label file
    anno_path: train.json
    # Modify to your own training data root directory
    dataset_dir: /root/publaynet/
    data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']

EvalDataset:
  !COCODataSet
    # Modify to your own validation data directory
    image_dir: val
    # Modify to your own validation data label file
    anno_path: val.json
    # Modify to your own validation data root
    dataset_dir: /root/publaynet/

TestDataset:
  !ImageFolder
    # Modify to your own test data label file
    anno_path: /root/publaynet/val.json
```

* Start training. During training, PP picodet pre training model will be downloaded by default. There is no need to download in advance.

```bash
# GPU training supports single-card and multi-card training
# The training log is automatically saved to the log directory

# Single card training
export CUDA_VISIBLE_DEVICES=0
python3 tools/train.py \
    -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \
    --eval

# Multi-card training, with the -- GPUS parameter specifying the card number
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py \
    -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \
    --eval
```

**Attention:**If the video memory is out during training, adjust Batch_size in TrainReader and base_LR in LearningRate. The published config is obtained by 8-card training. If the number of GPU cards is changed to 1, then the base_LR needs to be reduced by 8 times.

After starting training normally, you will see the following log output:

```
[08/15 04:02:30] ppdet.utils.checkpoint INFO: Finish loading model weights: /root/.cache/paddle/weights/LCNet_x1_0_pretrained.pdparams
[08/15 04:02:46] ppdet.engine INFO: Epoch: [0] [   0/1929] learning_rate: 0.040000 loss_vfl: 1.216707 loss_bbox: 1.142163 loss_dfl: 0.544196 loss: 2.903065 eta: 17 days, 13:50:26 batch_cost: 15.7452 data_cost: 2.9112 ips: 1.5243 images/s
[08/15 04:03:19] ppdet.engine INFO: Epoch: [0] [  20/1929] learning_rate: 0.064000 loss_vfl: 1.180627 loss_bbox: 0.939552 loss_dfl: 0.442436 loss: 2.628206 eta: 2 days, 12:18:53 batch_cost: 1.5770 data_cost: 0.0008 ips: 15.2184 images/s
[08/15 04:03:47] ppdet.engine INFO: Epoch: [0] [  40/1929] learning_rate: 0.088000 loss_vfl: 0.543321 loss_bbox: 1.071401 loss_dfl: 0.457817 loss: 2.057003 eta: 2 days, 0:07:03 batch_cost: 1.3190 data_cost: 0.0007 ips: 18.1954 images/s
[08/15 04:04:12] ppdet.engine INFO: Epoch: [0] [  60/1929] learning_rate: 0.112000 loss_vfl: 0.630989 loss_bbox: 0.859183 loss_dfl: 0.384702 loss: 1.883143 eta: 1 day, 19:01:29 batch_cost: 1.2177 data_cost: 0.0006 ips: 19.7087 images/s
```

- `--eval` indicates that the best model is saved as `output/picodet_lcnet_x1_0_layout/best_accuracy`  by default during the evaluation process 。

**Note that the configuration file for prediction / evaluation must be consistent with the training.**

### 4.2.  FGD Distillation Training

PaddleDetection supports FGD-based [Focal and Global Knowledge Distillation for Detectors]( https://arxiv.org/abs/2111.11837v1)  The training process of the target detection model of distillation, FGD distillation is divided into two parts `Focal` and `Global`.     `Focal` Distillation separates the foreground and background of the image, allowing the student model to focus on the key pixels of the foreground and background features of the teacher model respectively;`  Global`Distillation section reconstructs the relationships between different pixels and transfers them from the teacher to the student to compensate for the global information lost in `Focal`Distillation.

Change the dataset and modify the data configuration and number of categories in the [TODO] configuration, referring to 4.1. Start training:

```bash
# Single Card Training
export CUDA_VISIBLE_DEVICES=0
python3 tools/train.py \
    -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \
    --slim_config configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x2_5_layout.yml \
    --eval
```

- `-c`: Specify the model configuration file.
- `--slim_config`:  Specify the compression policy profile.

## 5. Model evaluation and prediction

### 5.1. Indicator evaluation

 Model parameters in training are saved by default in `output/picodet_ Lcnet_ X1_ 0_ Under the layout` directory. When evaluating indicators, you need to set `weights` to point to the saved parameter file.Assessment datasets can be accessed via `configs/picodet/legacy_ Model/application/layout_ Analysis/picodet_ Lcnet_ X1_ 0_ Layout. Yml` . Modify `EvalDataset`  : `img_dir`,`anno_ Path`and`dataset_dir` setting.

```bash
# GPU evaluation, weights as weights to be measured
python3 tools/eval.py \
    -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \
    -o weights=./output/picodet_lcnet_x1_0_layout/best_model
```

The following information will be printed out, such as mAP, AP0.5, etc.

```py
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.935
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.979
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.956
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.404
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.782
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.969
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.539
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.938
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.949
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.495
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.818
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.978
[08/15 07:07:09] ppdet.engine INFO: Total sample number: 11245, averge FPS: 24.405059207157436
[08/15 07:07:09] ppdet.engine INFO: Best test bbox ap is 0.935.
```

If you use the provided pre-training model for evaluation or the FGD distillation training model, replace the `weights` model path and execute the following command for evaluation:

```
python3 tools/eval.py \
    -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \
    --slim_config configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x2_5_layout.yml \
    -o weights=output/picodet_lcnet_x2_5_layout/best_model
```

- `-c`: Specify the model configuration file.
- `--slim_config`:  Specify the distillation policy profile.
- `-o weights`: Specify the model path trained by the distillation algorithm.

### 5.2. Test Layout Analysis Results


The profile predicted to be used must be consistent with the training, for example, if you pass `python3 tools/train'. Py-c configs/picodet/legacy_ Model/application/layout_ Analysis/picodet_ Lcnet_ X1_ 0_ Layout. Yml` completed the training process for the model.

With  trained PaddleDetection model, you can use the following commands to make model predictions.

```bash
python3 tools/infer.py \
    -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \
    -o weights='output/picodet_lcnet_x1_0_layout/best_model.pdparams' \
    --infer_img='docs/images/layout.jpg' \
    --output_dir=output_dir/ \
    --draw_threshold=0.5
```

- `--infer_img`:  Reasoning for a single picture can also be done via `--infer_ Dir`Inform all pictures in the file.
- `--output_dir`:  Specify the path to save the visualization results.
- `--draw_threshold`:Specify the NMS threshold for drawing the result box.

If you use the provided pre-training model for prediction or the FGD distillation training model, change the `weights` model path and execute the following command to make the prediction:

```
python3 tools/infer.py \
    -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \
    --slim_config configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x2_5_layout.yml \
    -o weights='output/picodet_lcnet_x2_5_layout/best_model.pdparams' \
    --infer_img='docs/images/layout.jpg' \
    --output_dir=output_dir/ \
    --draw_threshold=0.5
```


## 6. Model Export and Inference


### 6.1 Model Export

The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.

Compared with the checkpoints model, the inference model will additionally save the structural information of the model. Therefore, it is easier to deploy because the model structure and model parameters are already solidified in the inference model file, and is suitable for integration with actual systems.

Layout analysis model to inference model steps are as follows:

```bash
python3 tools/export_model.py \
    -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \
    -o weights=output/picodet_lcnet_x1_0_layout/best_model \
    --output_dir=output_inference/
```

* If no post-export processing is required, specify:`-o export.benchmark=True`(If -o already exists, delete -o here)
* If you do not need to export NMS, specify:`-o export.nms=False`

After successful conversion, there are three files in the directory:

```
output_inference/picodet_lcnet_x1_0_layout/
    ├── model.pdiparams         # inference Parameter file for model
    ├── model.pdiparams.info    # inference Model parameter information, ignorable
    └── model.pdmodel           # inference Model Structure File for Model
```

If you change the `weights` model path using the provided pre-training model to the Inference model, or using the FGD distillation training model, the model to inference model steps are as follows:

```bash
python3 tools/export_model.py \
    -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \
    --slim_config configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x2_5_layout.yml \
    -o weights=./output/picodet_lcnet_x2_5_layout/best_model \
    --output_dir=output_inference/
```

### 6.2 Model inference

Replace model_with the provided inference training model for inference or the FGD distillation training `model_dir`Inference model path, execute the following commands for inference:

```bash
python3 deploy/python/infer.py \
    --model_dir=output_inference/picodet_lcnet_x1_0_layout/ \
    --image_file=docs/images/layout.jpg \
    --device=CPU
```

- --device:Specify the GPU or CPU device

When model inference is complete, you will see the following log output:

```
------------------------------------------
-----------  Model Configuration -----------
Model Arch: PicoDet
Transform Order:
--transform op: Resize
--transform op: NormalizeImage
--transform op: Permute
--transform op: PadStride
--------------------------------------------
class_id:0, confidence:0.9921, left_top:[20.18,35.66],right_bottom:[341.58,600.99]
class_id:0, confidence:0.9914, left_top:[19.77,611.42],right_bottom:[341.48,901.82]
class_id:0, confidence:0.9904, left_top:[369.36,375.10],right_bottom:[691.29,600.59]
class_id:0, confidence:0.9835, left_top:[369.60,608.60],right_bottom:[691.38,736.72]
class_id:0, confidence:0.9830, left_top:[369.58,805.38],right_bottom:[690.97,901.80]
class_id:0, confidence:0.9716, left_top:[383.68,271.44],right_bottom:[688.93,335.39]
class_id:0, confidence:0.9452, left_top:[370.82,34.48],right_bottom:[688.10,63.54]
class_id:1, confidence:0.8712, left_top:[370.84,771.03],right_bottom:[519.30,789.13]
class_id:3, confidence:0.9856, left_top:[371.28,67.85],right_bottom:[685.73,267.72]
save result to: output/layout.jpg
Test iter 0
------------------ Inference Time Info ----------------------
total_time(ms): 2196.0, img_num: 1
average latency time(ms): 2196.00, QPS: 0.455373
preprocess_time(ms): 2172.50, inference_time(ms): 11.90, postprocess_time(ms): 11.60
```

- Model:model structure
- Transform Order:Preprocessing operation
A
an1018 已提交
432
- class_id, confidence, left_top, right_bottom:Indicates category id, confidence level, upper left coordinate, lower right coordinate, respectively
A
an1018 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
- save result to:Save path of visual layout analysis results, default save to ./output folder
- inference time info:Inference time, where preprocess_time represents the preprocessing time, Inference_time represents the model prediction time, and postprocess_time represents the post-processing time

The result of visualization layout is shown in the following figure

<div align="center">
    <img src="../docs/layout/layout_res.jpg" width="800">
</div>



## Citations

```
@inproceedings{zhong2019publaynet,
  title={PubLayNet: largest dataset ever for document layout analysis},
  author={Zhong, Xu and Tang, Jianbin and Yepes, Antonio Jimeno},
  booktitle={2019 International Conference on Document Analysis and Recognition (ICDAR)},
  year={2019},
  volume={},
  number={},
  pages={1015-1022},
  doi={10.1109/ICDAR.2019.00166},
  ISSN={1520-5363},
  month={Sep.},
  organization={IEEE}
}

@inproceedings{yang2022focal,
  title={Focal and global knowledge distillation for detectors},
  author={Yang, Zhendong and Li, Zhe and Jiang, Xiaohu and Gong, Yuan and Yuan, Zehuan and Zhao, Danpei and Yuan, Chun},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={4643--4652},
  year={2022}
}
```