predict_rec.py 7.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15
import os
import sys
16
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
17
sys.path.append(__dir__)
18
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
19

L
LDOUBLEV 已提交
20
import tools.infer.utility as utility
L
LDOUBLEV 已提交
21 22
from ppocr.utils.utility import initial_logger
logger = initial_logger()
L
LDOUBLEV 已提交
23
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
L
LDOUBLEV 已提交
24 25 26 27 28 29 30 31 32 33 34 35
import cv2
import copy
import numpy as np
import math
import time
from ppocr.utils.character import CharacterOps


class TextRecognizer(object):
    def __init__(self, args):
        self.predictor, self.input_tensor, self.output_tensors =\
            utility.create_predictor(args, mode="rec")
36
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
D
dyning 已提交
37
        self.character_type = args.rec_char_type
38
        self.rec_batch_num = args.rec_batch_num
T
tink2123 已提交
39
        self.rec_algorithm = args.rec_algorithm
T
tink2123 已提交
40 41
        char_ops_params = {
            "character_type": args.rec_char_type,
42
            "character_dict_path": args.rec_char_dict_path,
T
tink2123 已提交
43 44
            "use_space_char": args.use_space_char,
            "max_text_length": args.max_text_length
T
tink2123 已提交
45
        }
T
tink2123 已提交
46 47
        if self.rec_algorithm != "RARE":
            char_ops_params['loss_type'] = 'ctc'
T
tink2123 已提交
48
            self.loss_type = 'ctc'
T
tink2123 已提交
49 50
        else:
            char_ops_params['loss_type'] = 'attention'
T
tink2123 已提交
51
            self.loss_type = 'attention'
L
LDOUBLEV 已提交
52 53
        self.char_ops = CharacterOps(char_ops_params)

54
    def resize_norm_img(self, img, max_wh_ratio):
L
LDOUBLEV 已提交
55
        imgC, imgH, imgW = self.rec_image_shape
56
        assert imgC == img.shape[2]
57
        if self.character_type == "ch":
T
tink2123 已提交
58
            imgW = int((32 * max_wh_ratio))
59
        h, w = img.shape[:2]
60 61 62 63 64
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
T
tink2123 已提交
65
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
66 67 68 69 70 71 72 73 74 75
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_num = len(img_list)
76
        # Calculate the aspect ratio of all text bars
77 78 79
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
张欣-男's avatar
张欣-男 已提交
80
        # Sorting can speed up the recognition process
81 82 83 84
        indices = np.argsort(np.array(width_list))

        # rec_res = []
        rec_res = [['', 0.0]] * img_num
85
        batch_num = self.rec_batch_num
L
LDOUBLEV 已提交
86 87 88 89
        predict_time = 0
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
90
            max_wh_ratio = 0
L
LDOUBLEV 已提交
91
            for ino in range(beg_img_no, end_img_no):
92 93
                # h, w = img_list[ino].shape[0:2]
                h, w = img_list[indices[ino]].shape[0:2]
94 95 96
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
97
                # norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
T
tink2123 已提交
98 99
                norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                max_wh_ratio)
L
LDOUBLEV 已提交
100 101 102 103 104 105 106
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            starttime = time.time()
            self.input_tensor.copy_from_cpu(norm_img_batch)
            self.predictor.zero_copy_run()
T
tink2123 已提交
107

T
tink2123 已提交
108
            if self.loss_type == "ctc":
T
tink2123 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                rec_idx_lod = self.output_tensors[0].lod()[0]
                predict_batch = self.output_tensors[1].copy_to_cpu()
                predict_lod = self.output_tensors[1].lod()[0]
                elapse = time.time() - starttime
                predict_time += elapse
                for rno in range(len(rec_idx_lod) - 1):
                    beg = rec_idx_lod[rno]
                    end = rec_idx_lod[rno + 1]
                    rec_idx_tmp = rec_idx_batch[beg:end, 0]
                    preds_text = self.char_ops.decode(rec_idx_tmp)
                    beg = predict_lod[rno]
                    end = predict_lod[rno + 1]
                    probs = predict_batch[beg:end, :]
                    ind = np.argmax(probs, axis=1)
                    blank = probs.shape[1]
                    valid_ind = np.where(ind != (blank - 1))[0]
L
fix bug  
LDOUBLEV 已提交
126
                    if len(valid_ind) == 0:
127
                        continue
L
LDOUBLEV 已提交
128
                    score = np.mean(probs[valid_ind, ind[valid_ind]])
129 130
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
T
tink2123 已提交
131 132 133
            else:
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                predict_batch = self.output_tensors[1].copy_to_cpu()
T
tink2123 已提交
134 135
                elapse = time.time() - starttime
                predict_time += elapse
T
tink2123 已提交
136 137 138 139 140 141 142 143 144
                for rno in range(len(rec_idx_batch)):
                    end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
                    if len(end_pos) <= 1:
                        preds = rec_idx_batch[rno, 1:]
                        score = np.mean(predict_batch[rno, 1:])
                    else:
                        preds = rec_idx_batch[rno, 1:end_pos[1]]
                        score = np.mean(predict_batch[rno, 1:end_pos[1]])
                    preds_text = self.char_ops.decode(preds)
145 146
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
T
tink2123 已提交
147

L
LDOUBLEV 已提交
148 149 150
        return rec_res, predict_time


151
def main(args):
D
dyning 已提交
152
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
153 154 155 156
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
L
LDOUBLEV 已提交
157 158 159
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
160 161 162 163 164
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
T
tink2123 已提交
165 166
    try:
        rec_res, predict_time = text_recognizer(img_list)
T
tink2123 已提交
167 168
    except Exception as e:
        print(e)
T
tink2123 已提交
169
        logger.info(
T
tink2123 已提交
170 171 172 173
            "ERROR!!!! \n"
            "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
T
tink2123 已提交
174
            "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
T
tink2123 已提交
175
        exit()
L
LDOUBLEV 已提交
176 177 178 179
    for ino in range(len(img_list)):
        print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
    print("Total predict time for %d images:%.3f" %
          (len(img_list), predict_time))
180 181 182 183


if __name__ == "__main__":
    main(utility.parse_args())