db_process.py 6.3 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import math
import cv2
import numpy as np
import json
import sys

from .data_augment import AugmentData
from .random_crop_data import RandomCropData
from .make_shrink_map import MakeShrinkMap
from .make_border_map import MakeBorderMap


class DBProcessTrain(object):
    def __init__(self, params):
        self.img_set_dir = params['img_set_dir']
        self.image_shape = params['image_shape']

    def order_points_clockwise(self, pts):
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        diff = np.diff(pts, axis=1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]
        return rect

    def make_data_dict(self, imgvalue, entry):
        boxes = []
        texts = []
        ignores = []
        for rect in entry:
            points = rect['points']
            transcription = rect['transcription']
            try:
                box = self.order_points_clockwise(
                    np.array(points).reshape(-1, 2))
                if cv2.contourArea(box) > 0:
                    boxes.append(box)
                    texts.append(transcription)
                    ignores.append(transcription in ['*', '###'])
            except:
                print('load label failed!')
        data = {
            'image': imgvalue,
            'shape': [imgvalue.shape[0], imgvalue.shape[1]],
            'polys': np.array(boxes),
            'texts': texts,
            'ignore_tags': ignores,
        }
        return data

    def NormalizeImage(self, data):
        im = data['image']
        img_mean = [0.485, 0.456, 0.406]
        img_std = [0.229, 0.224, 0.225]
        im = im.astype(np.float32, copy=False)
        im = im / 255
        im -= img_mean
        im /= img_std
        channel_swap = (2, 0, 1)
        im = im.transpose(channel_swap)
        data['image'] = im
        return data

    def FilterKeys(self, data):
        filter_keys = ['polys', 'texts', 'ignore_tags', 'shape']
        for key in filter_keys:
            if key in data:
                del data[key]
        return data

    def convert_label_infor(self, label_infor):
        label_infor = label_infor.decode()
        label_infor = label_infor.encode('utf-8').decode('utf-8-sig')
        substr = label_infor.strip("\n").split("\t")
        img_path = self.img_set_dir + substr[0]
        label = json.loads(substr[1])
        return img_path, label

    def __call__(self, label_infor):
        img_path, gt_label = self.convert_label_infor(label_infor)
        imgvalue = cv2.imread(img_path)
        if imgvalue is None:
            return None
        data = self.make_data_dict(imgvalue, gt_label)
        data = AugmentData(data)
        data = RandomCropData(data, self.image_shape[1:])
        data = MakeShrinkMap(data)
        data = MakeBorderMap(data)
        data = self.NormalizeImage(data)
        data = self.FilterKeys(data)
        return data['image'], data['shrink_map'], data['shrink_mask'], data[
            'threshold_map'], data['threshold_mask']


class DBProcessTest(object):
    def __init__(self, params):
        super(DBProcessTest, self).__init__()
        self.resize_type = 0
        if 'det_image_shape' in params:
            self.image_shape = params['det_image_shape']
            # print(self.image_shape)
            self.resize_type = 1
        if 'max_side_len' in params:
            self.max_side_len = params['max_side_len']
        else:
            self.max_side_len = 2400

    def resize_image_type0(self, im):
        """
        resize image to a size multiple of 32 which is required by the network
        """
        max_side_len = self.max_side_len
        h, w, _ = im.shape

        resize_w = w
        resize_h = h

        # limit the max side
        if max(resize_h, resize_w) > max_side_len:
            if resize_h > resize_w:
                ratio = float(max_side_len) / resize_h
            else:
                ratio = float(max_side_len) / resize_w
        else:
            ratio = 1.
        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)
        if resize_h % 32 == 0:
            resize_h = resize_h
L
LDOUBLEV 已提交
146 147
        elif resize_h // 32 <= 1:
            resize_h = 32
L
LDOUBLEV 已提交
148
        else:
L
LDOUBLEV 已提交
149
            resize_h = (resize_h // 32 - 1) * 32
L
LDOUBLEV 已提交
150 151
        if resize_w % 32 == 0:
            resize_w = resize_w
L
LDOUBLEV 已提交
152 153
        elif resize_w // 32 <= 1:
            resize_w = 32
L
LDOUBLEV 已提交
154
        else:
L
LDOUBLEV 已提交
155
            resize_w = (resize_w // 32 - 1) * 32
L
LDOUBLEV 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
        try:
            if int(resize_w) <= 0 or int(resize_h) <= 0:
                return None, (None, None)
            im = cv2.resize(im, (int(resize_w), int(resize_h)))
        except:
            print(im.shape, resize_w, resize_h)
            sys.exit(0)
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return im, (ratio_h, ratio_w)

    def resize_image_type1(self, im):
        resize_h, resize_w = self.image_shape
        ori_h, ori_w = im.shape[:2]  # (h, w, c)
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
        return im, (ratio_h, ratio_w)

    def normalize(self, im):
        img_mean = [0.485, 0.456, 0.406]
        img_std = [0.229, 0.224, 0.225]
        im = im.astype(np.float32, copy=False)
        im = im / 255
        im -= img_mean
        im /= img_std
        channel_swap = (2, 0, 1)
        im = im.transpose(channel_swap)
        return im

    def __call__(self, im):
        if self.resize_type == 0:
            im, (ratio_h, ratio_w) = self.resize_image_type0(im)
        else:
            im, (ratio_h, ratio_w) = self.resize_image_type1(im)
        im = self.normalize(im)
        im = im[np.newaxis, :]
        return [im, (ratio_h, ratio_w)]