spectral_norm.py 5.4 KB
Newer Older
W
weishengyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F


def normal_(x, mean=0., std=1.):
    temp_value = paddle.normal(mean, std, shape=x.shape)
    x.set_value(temp_value)
    return x


class SpectralNorm(object):
    def __init__(self, name='weight', n_power_iterations=1, dim=0, eps=1e-12):
        self.name = name
        self.dim = dim
        if n_power_iterations <= 0:
            raise ValueError('Expected n_power_iterations to be positive, but '
                             'got n_power_iterations={}'.format(
                                 n_power_iterations))
        self.n_power_iterations = n_power_iterations
        self.eps = eps

    def reshape_weight_to_matrix(self, weight):
        weight_mat = weight
        if self.dim != 0:
            # transpose dim to front
            weight_mat = weight_mat.transpose([
                self.dim,
                * [d for d in range(weight_mat.dim()) if d != self.dim]
            ])

        height = weight_mat.shape[0]

        return weight_mat.reshape([height, -1])

    def compute_weight(self, module, do_power_iteration):
        weight = getattr(module, self.name + '_orig')
        u = getattr(module, self.name + '_u')
        v = getattr(module, self.name + '_v')
        weight_mat = self.reshape_weight_to_matrix(weight)

        if do_power_iteration:
            with paddle.no_grad():
                for _ in range(self.n_power_iterations):
                    v.set_value(
                        F.normalize(
                            paddle.matmul(
                                weight_mat,
                                u,
                                transpose_x=True,
                                transpose_y=False),
                            axis=0,
                            epsilon=self.eps, ))

                    u.set_value(
                        F.normalize(
                            paddle.matmul(weight_mat, v),
                            axis=0,
                            epsilon=self.eps, ))
                if self.n_power_iterations > 0:
                    u = u.clone()
                    v = v.clone()

        sigma = paddle.dot(u, paddle.mv(weight_mat, v))
        weight = weight / sigma
        return weight

    def remove(self, module):
        with paddle.no_grad():
            weight = self.compute_weight(module, do_power_iteration=False)
        delattr(module, self.name)
        delattr(module, self.name + '_u')
        delattr(module, self.name + '_v')
        delattr(module, self.name + '_orig')

        module.add_parameter(self.name, weight.detach())

    def __call__(self, module, inputs):
        setattr(
            module,
            self.name,
            self.compute_weight(
                module, do_power_iteration=module.training))

    @staticmethod
    def apply(module, name, n_power_iterations, dim, eps):
        for k, hook in module._forward_pre_hooks.items():
            if isinstance(hook, SpectralNorm) and hook.name == name:
                raise RuntimeError(
                    "Cannot register two spectral_norm hooks on "
                    "the same parameter {}".format(name))

        fn = SpectralNorm(name, n_power_iterations, dim, eps)
        weight = module._parameters[name]

        with paddle.no_grad():
            weight_mat = fn.reshape_weight_to_matrix(weight)
            h, w = weight_mat.shape

            # randomly initialize u and v
            u = module.create_parameter([h])
            u = normal_(u, 0., 1.)
            v = module.create_parameter([w])
            v = normal_(v, 0., 1.)
            u = F.normalize(u, axis=0, epsilon=fn.eps)
            v = F.normalize(v, axis=0, epsilon=fn.eps)

        # delete fn.name form parameters, otherwise you can not set attribute
        del module._parameters[fn.name]
        module.add_parameter(fn.name + "_orig", weight)
        # still need to assign weight back as fn.name because all sorts of
        # things may assume that it exists, e.g., when initializing weights.
        # However, we can't directly assign as it could be an Parameter and
        # gets added as a parameter. Instead, we register weight * 1.0 as a plain
        # attribute.
        setattr(module, fn.name, weight * 1.0)
        module.register_buffer(fn.name + "_u", u)
        module.register_buffer(fn.name + "_v", v)

        module.register_forward_pre_hook(fn)
        return fn


def spectral_norm(module,
                  name='weight',
                  n_power_iterations=1,
                  eps=1e-12,
                  dim=None):

    if dim is None:
        if isinstance(module, (nn.Conv1DTranspose, nn.Conv2DTranspose,
                               nn.Conv3DTranspose, nn.Linear)):
            dim = 1
        else:
            dim = 0
    SpectralNorm.apply(module, name, n_power_iterations, dim, eps)
    return module