dataset_traversal.py 6.4 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
T
tink2123 已提交
16
import sys
L
LDOUBLEV 已提交
17 18 19 20 21 22 23 24 25
import math
import random
import functools
import numpy as np
import cv2
import string
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.utility import create_module
L
LDOUBLEV 已提交
26
from ppocr.utils.utility import get_image_file_list
L
LDOUBLEV 已提交
27 28 29 30 31 32 33
import time


class TrainReader(object):
    def __init__(self, params):
        self.num_workers = params['num_workers']
        self.label_file_path = params['label_file_path']
L
licx 已提交
34 35 36 37 38
        print(self.label_file_path)
        self.use_mul_data = False
        if isinstance(self.label_file_path, list):
            self.use_mul_data = True
            self.data_ratio_list = params['data_ratio_list']
L
LDOUBLEV 已提交
39 40 41 42 43
        self.batch_size = params['train_batch_size_per_card']
        assert 'process_function' in params,\
            "absence process_function in Reader"
        self.process = create_module(params['process_function'])(params)

44
    def __call__(self, process_id):     
L
LDOUBLEV 已提交
45 46 47 48 49 50
        def sample_iter_reader():
            with open(self.label_file_path, "rb") as fin:
                label_infor_list = fin.readlines()
            img_num = len(label_infor_list)
            img_id_list = list(range(img_num))
            random.shuffle(img_id_list)
L
licx 已提交
51
            if sys.platform == "win32" and self.num_workers != 1:
T
tink2123 已提交
52 53 54
                print("multiprocess is not fully compatible with Windows."
                      "num_workers will be 1.")
                self.num_workers = 1
L
LDOUBLEV 已提交
55 56 57 58 59 60 61
            for img_id in range(process_id, img_num, self.num_workers):
                label_infor = label_infor_list[img_id_list[img_id]]
                outs = self.process(label_infor)
                if outs is None:
                    continue
                yield outs

L
licx 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        def sample_iter_reader_mul():
            batch_size = 1000
            data_source_list = self.label_file_path
            batch_size_list = list(map(int, [max(1.0, batch_size * x) for x in self.data_ratio_list]))
            print(self.data_ratio_list, batch_size_list)

            data_filename_list, data_size_list, fetch_record_list = [], [], []
            for data_source in data_source_list:
                image_files = open(data_source, "rb").readlines()
                random.shuffle(image_files)
                data_filename_list.append(image_files)
                data_size_list.append(len(image_files))
                fetch_record_list.append(0)

            image_batch, poly_batch = [], []
            # get a batch of img_fns and poly_fns
            for i in range(0, len(batch_size_list)):
                bs = batch_size_list[i]
                ds = data_size_list[i]
                image_names = data_filename_list[i]
                fetch_record = fetch_record_list[i]
                data_path = data_source_list[i]
                for j in range(fetch_record, fetch_record + bs):
                    index = j % ds
                    image_batch.append(image_names[index])

                if (fetch_record + bs) > ds:
                    fetch_record_list[i] = 0
                    random.shuffle(data_filename_list[i])
                else:
                    fetch_record_list[i] = fetch_record + bs

            if sys.platform == "win32":
                print("multiprocess is not fully compatible with Windows."
                      "num_workers will be 1.")
                self.num_workers = 1

            for label_infor in image_batch:
                outs = self.process(label_infor)
                if outs is None:
                    continue
                yield outs

L
LDOUBLEV 已提交
105 106
        def batch_iter_reader():
            batch_outs = []
L
licx 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119
            if self.use_mul_data:
                print("Sample date from multiple datasets!")
                for outs in sample_iter_reader_mul():
                    batch_outs.append(outs)
                    if len(batch_outs) == self.batch_size:
                        yield batch_outs
                        batch_outs = []                
            else:
                for outs in sample_iter_reader():
                    batch_outs.append(outs)
                    if len(batch_outs) == self.batch_size:
                        yield batch_outs
                        batch_outs = []
L
LDOUBLEV 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

        return batch_iter_reader


class EvalTestReader(object):
    def __init__(self, params):
        self.params = params
        assert 'process_function' in params,\
            "absence process_function in EvalTestReader"

    def __call__(self, mode):
        process_function = create_module(self.params['process_function'])(
            self.params)
        batch_size = self.params['test_batch_size_per_card']

        img_list = []
L
LDOUBLEV 已提交
136
        if mode != "test":
L
LDOUBLEV 已提交
137 138 139 140 141 142
            img_set_dir = self.params['img_set_dir']
            img_name_list_path = self.params['label_file_path']
            with open(img_name_list_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    img_name = line.decode().strip("\n").split("\t")[0]
L
LDOUBLEV 已提交
143
                    img_path = os.path.join(img_set_dir, img_name)
L
LDOUBLEV 已提交
144
                    img_list.append(img_path)
L
LDOUBLEV 已提交
145
        else:
146
            img_path = self.params['infer_img']
L
LDOUBLEV 已提交
147
            img_list = get_image_file_list(img_path)
L
LDOUBLEV 已提交
148 149 150

        def batch_iter_reader():
            batch_outs = []
L
LDOUBLEV 已提交
151
            for img_path in img_list:
L
LDOUBLEV 已提交
152
                img = cv2.imread(img_path)
L
LDOUBLEV 已提交
153 154
                if img is None:
                    logger.info("{} does not exist!".format(img_path))
155
                    continue
X
xxxpsyduck 已提交
156
                elif len(list(img.shape)) == 2 or img.shape[2] == 1:
L
LDOUBLEV 已提交
157
                    img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
L
LDOUBLEV 已提交
158
                outs = process_function(img)
L
LDOUBLEV 已提交
159
                outs.append(img_path)
L
LDOUBLEV 已提交
160 161 162 163 164 165 166 167
                batch_outs.append(outs)
                if len(batch_outs) == batch_size:
                    yield batch_outs
                    batch_outs = []
            if len(batch_outs) != 0:
                yield batch_outs

        return batch_iter_reader