optimizer.py 3.8 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
littletomatodonkey's avatar
littletomatodonkey 已提交
18 19
from paddle.fluid.regularizer import L2Decay

T
tink2123 已提交
20 21 22
from ppocr.utils.utility import initial_logger

logger = initial_logger()
L
LDOUBLEV 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35


def AdamDecay(params, parameter_list=None):
    """
    define optimizer function
    args:
        params(dict): the super parameters
        parameter_list (list): list of Variable names to update to minimize loss
    return:
    """
    base_lr = params['base_lr']
    beta1 = params['beta1']
    beta2 = params['beta2']
littletomatodonkey's avatar
littletomatodonkey 已提交
36 37
    l2_decay = params.get("l2_decay", 0.0)

T
tink2123 已提交
38
    if 'decay' in params:
L
licx 已提交
39
        supported_decay_mode = ["cosine_decay", "piecewise_decay"]
T
tink2123 已提交
40 41
        params = params['decay']
        decay_mode = params['function']
L
licx 已提交
42 43 44
        assert decay_mode in supported_decay_mode, "Supported decay mode is {}, but got {}".format(
            supported_decay_mode, decay_mode)

T
tink2123 已提交
45
        if decay_mode == "cosine_decay":
L
licx 已提交
46 47
            step_each_epoch = params['step_each_epoch']
            total_epoch = params['total_epoch']
T
tink2123 已提交
48 49 50 51
            base_lr = fluid.layers.cosine_decay(
                learning_rate=base_lr,
                step_each_epoch=step_each_epoch,
                epochs=total_epoch)
L
licx 已提交
52 53 54 55 56 57 58 59 60
        elif decay_mode == "piecewise_decay":
            boundaries = params["boundaries"]
            decay_rate = params["decay_rate"]
            values = [
                base_lr * decay_rate**idx
                for idx in range(len(boundaries) + 1)
            ]
            base_lr = fluid.layers.piecewise_decay(boundaries, values)

L
LDOUBLEV 已提交
61 62 63 64
    optimizer = fluid.optimizer.Adam(
        learning_rate=base_lr,
        beta1=beta1,
        beta2=beta2,
littletomatodonkey's avatar
littletomatodonkey 已提交
65
        regularization=L2Decay(regularization_coeff=l2_decay),
L
LDOUBLEV 已提交
66 67
        parameter_list=parameter_list)
    return optimizer
L
licx 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108


def RMSProp(params, parameter_list=None):
    """
    define optimizer function
    args:
        params(dict): the super parameters
        parameter_list (list): list of Variable names to update to minimize loss
    return:
    """
    base_lr = params.get("base_lr", 0.001)
    l2_decay = params.get("l2_decay", 0.00005)

    if 'decay' in params:
        supported_decay_mode = ["cosine_decay", "piecewise_decay"]
        params = params['decay']
        decay_mode = params['function']
        assert decay_mode in supported_decay_mode, "Supported decay mode is {}, but got {}".format(
            supported_decay_mode, decay_mode)

        if decay_mode == "cosine_decay":
            step_each_epoch = params['step_each_epoch']
            total_epoch = params['total_epoch']
            base_lr = fluid.layers.cosine_decay(
                learning_rate=base_lr,
                step_each_epoch=step_each_epoch,
                epochs=total_epoch)
        elif decay_mode == "piecewise_decay":
            boundaries = params["boundaries"]
            decay_rate = params["decay_rate"]
            values = [
                base_lr * decay_rate**idx
                for idx in range(len(boundaries) + 1)
            ]
            base_lr = fluid.layers.piecewise_decay(boundaries, values)

    optimizer = fluid.optimizer.RMSProp(
        learning_rate=base_lr,
        regularization=fluid.regularizer.L2Decay(regularization_coeff=l2_decay))
        
    return optimizer