inference.md 8.9 KB
Newer Older
L
LDOUBLEV 已提交
1

D
dyning 已提交
2
# 基于预测引擎推理
L
LDOUBLEV 已提交
3 4 5 6

inference 模型(fluid.io.save_inference_model保存的模型)
一般是模型训练完成后保存的固化模型,多用于预测部署。
训练过程中保存的模型是checkpoints模型,保存的是模型的参数,多用于恢复训练等。
D
dyning 已提交
7
与checkpoints模型相比,inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合与实际系统集成。更详细的介绍请参考文档[分类预测框架](https://paddleclas.readthedocs.io/zh_CN/latest/extension/paddle_inference.html). 接下来将依次介绍文本检测、文本识别以及两者串联基于预测引擎推理。与此同时也会介绍checkpoints转换成inference model的实现。
L
LDOUBLEV 已提交
8 9 10

## 文本检测模型推理

D
dyning 已提交
11 12 13 14 15
下面将介绍超轻量中文检测模型推理、DB文本检测模型推理和EAST文本检测模型推理。默认配置是根据DB文本检测模型推理设置的。由于EAST和DB算法差别很大,在推理时,需要通过传入相应的参数适配EAST文本检测算法。

### 1.超轻量中文检测模型推理

超轻量中文检测模型推理,可以执行如下命令:
L
LDOUBLEV 已提交
16 17

```
D
dyning 已提交
18
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det/"
L
LDOUBLEV 已提交
19 20
```

D
dyning 已提交
21 22 23
可视化文本检测结果默认保存到 ./inference_results 文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:

![](imgs_results/det_res_2.jpg)
L
LDOUBLEV 已提交
24

D
dyning 已提交
25
通过设置参数det_max_side_len的大小,改变检测算法中图片规范化的最大值。当图片的长宽都小于det_max_side_len,则使用原图预测,否则将图片等比例缩放到最大值,进行预测。该参数默认设置为det_max_side_len=960. 如果输入图片的分辨率比较大,而且想使用更大的分辨率预测,可以执行如下命令:
L
LDOUBLEV 已提交
26 27

```
D
dyning 已提交
28
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det/" --det_max_side_len=1200
D
dyning 已提交
29 30 31 32 33 34
```

### 2.DB文本检测模型推理

首先将DB文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)),可以使用如下命令进行转换:

L
LDOUBLEV 已提交
35
```
D
dyning 已提交
36 37 38 39
# -c后面设置训练算法的yml配置文件
# Global.checkpoints参数设置待转换的训练模型地址,不用添加文件后缀.pdmodel,.pdopt或.pdparams。
# Global.save_inference_dir参数设置转换的模型将保存的地址。

D
dyning 已提交
40
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.checkpoints="./models/det_r50_vd_db/best_accuracy" Global.save_inference_dir="./inference/det_db"
D
dyning 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
```

DB文本检测模型推理,可以执行如下命令:

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/"
```

可视化文本检测结果默认保存到 ./inference_results 文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:

![](imgs_results/det_res_img_10_db.jpg)

**注意**:由于ICDAR2015数据集只有1000张训练图像,主要针对英文场景,所以上述模型对中文文本图像检测效果非常差。

### 3.EAST文本检测模型推理

首先将EAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)),可以使用如下命令进行转换:

```
# -c后面设置训练算法的yml配置文件
# Global.checkpoints参数设置待转换的训练模型地址,不用添加文件后缀.pdmodel,.pdopt或.pdparams。
# Global.save_inference_dir参数设置转换的模型将保存的地址。

D
dyning 已提交
64
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.checkpoints="./models/det_r50_vd_east/best_accuracy" Global.save_inference_dir="./inference/det_east"
D
dyning 已提交
65 66 67 68 69 70 71 72 73 74 75 76
```

EAST文本检测模型推理,需要设置参数det_algorithm,指定检测算法类型为EAST,可以执行如下命令:

```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST"
```
可视化文本检测结果默认保存到 ./inference_results 文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:

![](imgs_results/det_res_img_10_east.jpg)

**注意**:本代码库中EAST后处理中NMS采用的Python版本,所以预测速度比较耗时。如果采用C++版本,会有明显加速。
L
LDOUBLEV 已提交
77 78 79 80


## 文本识别模型推理

D
dyning 已提交
81
下面将介绍超轻量中文检测模型推理和基于CTC损失的识别模型推理。**而基于Attention损失的识别模型推理还在调试中**。对于中文文本识别,建议优先选择基于CTC损失的识别模型,实践中也发现基于Attention损失的效果不如基于CTC损失的识别模型。
D
dyning 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95


### 1.超轻量中文识别模型推理

超轻量中文识别模型推理,可以执行如下命令:

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/word_4.jpg" --rec_model_dir="./inference/rec/"
```

![](imgs_words/word_4.jpg)

执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下:

D
dyning 已提交
96
Predicts of ./doc/imgs_words/word_4.jpg:['实力活力', 0.89552695]
D
dyning 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114


### 2.基于CTC损失的识别模型推理

我们以STAR-Net为例,介绍基于CTC损失的识别模型推理。 CRNN和Rosetta使用方式类似,不用设置识别算法参数rec_algorithm。

首先将STAR-Net文本识别训练过程中保存的模型,转换成inference model。以基于Resnet34_vd骨干网络,使用MJSynth和SynthText两个英文文本识别合成数据集训练
的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)),可以使用如下命令进行转换:

```
# -c后面设置训练算法的yml配置文件
# Global.checkpoints参数设置待转换的训练模型地址,不用添加文件后缀.pdmodel,.pdopt或.pdparams。
# Global.save_inference_dir参数设置转换的模型将保存的地址。

python3 tools/export_model.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml -o Global.checkpoints="./models/rec_r34_vd_tps_bilstm_ctc/best_accuracy" Global.save_inference_dir="./inference/starnet"
```

STAR-Net文本识别模型推理,可以执行如下命令:
L
LDOUBLEV 已提交
115 116

```
D
dyning 已提交
117
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
L
LDOUBLEV 已提交
118
```
D
dyning 已提交
119
![](imgs_words_en/word_336.png)
D
dyning 已提交
120 121 122

执行命令后,上面图像的识别结果如下:

D
dyning 已提交
123
Predicts of ./doc/imgs_words_en/word_336.png:['super', 0.9999555]
D
dyning 已提交
124 125

**注意**:由于上述模型是参考[DTRB](https://arxiv.org/abs/1904.01906)文本识别训练和评估流程,与超轻量级中文识别模型训练有两方面不同:
L
LDOUBLEV 已提交
126

D
dyning 已提交
127
- 训练时采用的图像分辨率不同,训练上述模型采用的图像分辨率是[3,32,100],而中文模型训练时,为了保证长文本的识别效果,训练时采用的图像分辨率是[3, 32, 320]。预测推理程序默认的的形状参数是训练中文采用的图像分辨率,即[3, 32, 320]。因此,这里推理上述英文模型时,需要通过参数rec_image_shape设置识别图像的形状。
L
LDOUBLEV 已提交
128

D
dyning 已提交
129
- 字符列表,DTRB论文中实验只是针对26个小写英文本母和10个数字进行实验,总共36个字符。所有大小字符都转成了小写字符,不在上面列表的字符都忽略,认为是空格。因此这里没有输入字符字典,而是通过如下命令生成字典.因此在推理时需要设置参数rec_char_type,指定为英文"en"。
L
LDOUBLEV 已提交
130 131

```
D
dyning 已提交
132 133
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
L
LDOUBLEV 已提交
134 135 136 137
```

## 文本检测、识别串联推理

D
dyning 已提交
138 139 140 141
### 1.超轻量中文OCR模型推理

在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。可视化识别结果默认保存到 ./inference_results 文件夹里面。

L
LDOUBLEV 已提交
142
```
D
dyning 已提交
143
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det/"  --rec_model_dir="./inference/rec/"
L
LDOUBLEV 已提交
144 145
```

D
dyning 已提交
146 147 148 149 150 151 152
执行命令后,识别结果图像如下:

![](imgs_results/2.jpg)

### 2.其他模型推理

如果想尝试使用其他检测算法或者识别算法,请参考上述文本检测模型推理和文本识别模型推理,更新相应配置和模型,下面给出基于EAST文本检测和STAR-Net文本识别执行命令:
L
LDOUBLEV 已提交
153 154

```
D
dyning 已提交
155
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/rec/" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
L
LDOUBLEV 已提交
156
```
D
dyning 已提交
157 158 159

执行命令后,识别结果图像如下:

D
dyning 已提交
160
![](imgs_results/img_10.jpg)