algorithm_rec_rosetta_en.md 4.5 KB
Newer Older
L
lubin10 已提交
1
# Rosetta
L
lubin10 已提交
2

L
lubin10 已提交
3 4 5
- [1. Introduction](#1)
- [2. Environment](#2)
- [3. Model Training / Evaluation / Prediction](#3)
L
lubin10 已提交
6 7
    - [3.1 Training](#3-1)
    - [3.2 Evaluation](#3-2)
L
lubin10 已提交
8
    - [3.3 Prediction](#3-3)
L
lubin10 已提交
9 10 11 12 13
- [4. Inference and Deployment](#4)
    - [4.1 Python Inference](#4-1)
    - [4.2 C++ Inference](#4-2)
    - [4.3 Serving](#4-3)
    - [4.4 More](#4-4)
L
lubin10 已提交
14 15 16
- [5. FAQ](#5)

<a name="1"></a>
L
lubin10 已提交
17
## 1. Introduction
L
lubin10 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Paper information:
> [Rosetta: Large Scale System for Text Detection and Recognition in Images](https://arxiv.org/abs/1910.05085)
> Borisyuk F , Gordo A , V Sivakumar
> KDD, 2018

Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:

|Models|Backbone Networks|Configuration Files|Avg Accuracy|Download Links|
| --- | --- | --- | --- | --- |
|Rosetta|Resnet34_vd|[configs/rec/rec_r34_vd_none_none_ctc.yml](../../configs/rec/rec_r34_vd_none_none_ctc.yml)|79.11%|[training model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar)|
|Rosetta|MobileNetV3|[configs/rec/rec_mv3_none_none_ctc.yml](../../configs/rec/rec_mv3_none_none_ctc.yml)|75.80%|[training model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_none_ctc_v2.0_train.tar)|


<a name="2"></a>
L
lubin10 已提交
33
## 2. Environment
L
lubin10 已提交
34
Please refer to [Operating Environment Preparation](./environment_en.md) to configure the PaddleOCR operating environment, and refer to [Project Clone](./clone_en.md) to clone the project code.
L
lubin10 已提交
35 36 37


<a name="3"></a>
L
lubin10 已提交
38
## 3. Model Training / Evaluation / Prediction
L
lubin10 已提交
39

L
lubin10 已提交
40
Please refer to [Text Recognition Training Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**. Take the backbone network based on Resnet34_vd as an example:
L
lubin10 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

<a name="3-1"></a>
### 3.1 Training

````
#Single card training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_r34_vd_none_none_ctc.yml
#Multi-card training, specify the card number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r34_vd_none_none_ctc.yml
````

<a name="3-2"></a>
### 3.2 Evaluation

````
# GPU evaluation, Global.pretrained_model is the model to be evaluated
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r34_vd_none_none_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
````

<a name="3-3"></a>
### 3.3 Prediction

````
python3 tools/infer_rec.py -c configs/rec/rec_r34_vd_none_none_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
````

<a name="4"></a>
L
lubin10 已提交
68
## 4. Inference and Deployment
L
lubin10 已提交
69 70

<a name="4-1"></a>
L
lubin10 已提交
71
### 4.1 Python Inference
L
lubin10 已提交
72 73 74 75 76 77 78 79 80
First, convert the model saved during the Rosetta text recognition training process into an inference model. Take the model trained on the MJSynth and SynthText text recognition datasets based on the Resnet34_vd backbone network as an example ( [Model download address](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar) ), which can be converted using the following command:

```shell
python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_none_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_none_ctc_v2.0_train/best_accuracy Global.save_inference_dir=./inference/rec_rosetta
````

Rosetta text recognition model inference, you can execute the following commands:

```shell
L
lubin10 已提交
81 82 83 84 85 86 87 88 89
python3 tools/infer/predict_rec.py --image_dir="doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_rosetta/" --rec_image_shape="3, 32, 100" --rec_char_dict_path= "./ppocr/utils/ic15_dict.txt"
````

The inference results are as follows:

![](../../doc/imgs_words/en/word_1.png)

````
Predicts of doc/imgs_words/en/word_1.png:('joint', 0.9999982714653015)
L
lubin10 已提交
90 91 92
````

<a name="4-2"></a>
L
lubin10 已提交
93
### 4.2 C++ Inference
L
lubin10 已提交
94 95 96 97

Not currently supported

<a name="4-3"></a>
L
lubin10 已提交
98
### 4.3 Serving
L
lubin10 已提交
99 100 101 102

Not currently supported

<a name="4-4"></a>
L
lubin10 已提交
103
### 4.4 More
L
lubin10 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

The Rosetta model also supports the following inference deployment methods:

- Paddle2ONNX Inference: After preparing the inference model, refer to the [paddle2onnx](../../deploy/paddle2onnx/) tutorial.

<a name="5"></a>
## 5. FAQ


## Quote

````bibtex
@inproceedings{2018Rosetta,
  title={Rosetta: Large Scale System for Text Detection and Recognition in Images},
  author={ Borisyuk, Fedor and Gordo, Albert and Sivakumar, Viswanath },
  booktitle={the 24th ACM SIGKDD International Conference},
  year={2018},
}
````