eval.py 5.3 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

L
LDOUBLEV 已提交
19 20
import os
import sys
W
WenmuZhou 已提交
21

22
__dir__ = os.path.dirname(os.path.abspath(__file__))
littletomatodonkey's avatar
littletomatodonkey 已提交
23 24
sys.path.insert(0, __dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
L
LDOUBLEV 已提交
25

文幕地方's avatar
文幕地方 已提交
26
import paddle
W
WenmuZhou 已提交
27
from ppocr.data import build_dataloader
W
WenmuZhou 已提交
28
from ppocr.modeling.architectures import build_model
W
WenmuZhou 已提交
29 30
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
31
from ppocr.utils.save_load import load_model
W
WenmuZhou 已提交
32
import tools.program as program
L
LDOUBLEV 已提交
33 34


W
WenmuZhou 已提交
35 36 37
def main():
    global_config = config['Global']
    # build dataloader
W
WenmuZhou 已提交
38
    valid_dataloader = build_dataloader(config, 'Eval', device, logger)
L
LDOUBLEV 已提交
39

W
WenmuZhou 已提交
40 41 42
    # build post process
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)
L
LDOUBLEV 已提交
43

W
WenmuZhou 已提交
44 45 46
    # build model
    # for rec algorithm
    if hasattr(post_process_class, 'character'):
47 48 49 50
        char_num = len(getattr(post_process_class, 'character'))
        if config['Architecture']["algorithm"] in ["Distillation",
                                                   ]:  # distillation model
            for key in config['Architecture']["Models"]:
A
andyjpaddle 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
                if config['Architecture']['Models'][key]['Head'][
                        'name'] == 'MultiHead':  # for multi head
                    out_channels_list = {}
                    if config['PostProcess'][
                            'name'] == 'DistillationSARLabelDecode':
                        char_num = char_num - 2
                    out_channels_list['CTCLabelDecode'] = char_num
                    out_channels_list['SARLabelDecode'] = char_num + 2
                    config['Architecture']['Models'][key]['Head'][
                        'out_channels_list'] = out_channels_list
                else:
                    config['Architecture']["Models"][key]["Head"][
                        'out_channels'] = char_num
        elif config['Architecture']['Head'][
                'name'] == 'MultiHead':  # for multi head
            out_channels_list = {}
            if config['PostProcess']['name'] == 'SARLabelDecode':
                char_num = char_num - 2
            out_channels_list['CTCLabelDecode'] = char_num
            out_channels_list['SARLabelDecode'] = char_num + 2
            config['Architecture']['Head'][
                'out_channels_list'] = out_channels_list
73 74 75
        else:  # base rec model
            config['Architecture']["Head"]['out_channels'] = char_num

W
WenmuZhou 已提交
76
    model = build_model(config['Architecture'])
xuyang2233's avatar
xuyang2233 已提交
77
    extra_input_models = ["SRN", "NRTR", "SAR", "SEED", "SVTR", "VisionLAN", "RobustScanner"]
A
andyjpaddle 已提交
78
    extra_input = False
A
andyjpaddle 已提交
79
    if config['Architecture']['algorithm'] == 'Distillation':
A
andyjpaddle 已提交
80 81 82
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
A
andyjpaddle 已提交
83 84
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
D
fix ci  
Double_V 已提交
85 86 87 88
    if "model_type" in config['Architecture'].keys():
        model_type = config['Architecture']['model_type']
    else:
        model_type = None
L
LDOUBLEV 已提交
89

文幕地方's avatar
文幕地方 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    # build metric
    eval_class = build_metric(config['Metric'])
    # amp
    use_amp = config["Global"].get("use_amp", False)
    amp_level = config["Global"].get("amp_level", 'O2')
    amp_custom_black_list = config['Global'].get('amp_custom_black_list',[])
    if use_amp:
        AMP_RELATED_FLAGS_SETTING = {
            'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
            'FLAGS_max_inplace_grad_add': 8,
        }
        paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING)
        scale_loss = config["Global"].get("scale_loss", 1.0)
        use_dynamic_loss_scaling = config["Global"].get(
            "use_dynamic_loss_scaling", False)
        scaler = paddle.amp.GradScaler(
            init_loss_scaling=scale_loss,
            use_dynamic_loss_scaling=use_dynamic_loss_scaling)
        if amp_level == "O2":
            model = paddle.amp.decorate(
                models=model, level=amp_level, master_weight=True)
    else:
        scaler = None

114 115
    best_model_dict = load_model(
        config, model, model_type=config['Architecture']["model_type"])
W
WenmuZhou 已提交
116 117 118 119
    if len(best_model_dict):
        logger.info('metric in ckpt ***************')
        for k, v in best_model_dict.items():
            logger.info('{}:{}'.format(k, v))
L
LDOUBLEV 已提交
120

W
WenmuZhou 已提交
121
    # start eval
W
WenmuZhou 已提交
122
    metric = program.eval(model, valid_dataloader, post_process_class,
文幕地方's avatar
文幕地方 已提交
123
                          eval_class, model_type, extra_input, scaler, amp_level, amp_custom_black_list)
W
WenmuZhou 已提交
124
    logger.info('metric eval ***************')
W
WenmuZhou 已提交
125
    for k, v in metric.items():
W
WenmuZhou 已提交
126
        logger.info('{}:{}'.format(k, v))
L
LDOUBLEV 已提交
127 128 129


if __name__ == '__main__':
W
WenmuZhou 已提交
130
    config, device, logger, vdl_writer = program.preprocess()
L
LDOUBLEV 已提交
131
    main()