infer_ser.py 9.5 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import json
import cv2
import numpy as np
from copy import deepcopy

import paddle

# relative reference
from utils import parse_args, get_image_file_list, draw_ser_results, get_bio_label_maps
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification


def pad_sentences(tokenizer,
                  encoded_inputs,
                  max_seq_len=512,
                  pad_to_max_seq_len=True,
                  return_attention_mask=True,
                  return_token_type_ids=True,
                  return_overflowing_tokens=False,
                  return_special_tokens_mask=False):
    # Padding with larger size, reshape is carried out
    max_seq_len = (
        len(encoded_inputs["input_ids"]) // max_seq_len + 1) * max_seq_len

    needs_to_be_padded = pad_to_max_seq_len and \
                         max_seq_len and len(encoded_inputs["input_ids"]) < max_seq_len

    if needs_to_be_padded:
        difference = max_seq_len - len(encoded_inputs["input_ids"])
        if tokenizer.padding_side == 'right':
            if return_attention_mask:
                encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
                    "input_ids"]) + [0] * difference
            if return_token_type_ids:
                encoded_inputs["token_type_ids"] = (
                    encoded_inputs["token_type_ids"] +
                    [tokenizer.pad_token_type_id] * difference)
            if return_special_tokens_mask:
                encoded_inputs["special_tokens_mask"] = encoded_inputs[
                    "special_tokens_mask"] + [1] * difference
            encoded_inputs["input_ids"] = encoded_inputs[
                "input_ids"] + [tokenizer.pad_token_id] * difference
            encoded_inputs["bbox"] = encoded_inputs["bbox"] + [[0, 0, 0, 0]
                                                               ] * difference
        else:
文幕地方's avatar
文幕地方 已提交
62 63
            assert False, "padding_side of tokenizer just supports [\"right\"] but got {}".format(
                tokenizer.padding_side)
littletomatodonkey's avatar
littletomatodonkey 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    else:
        if return_attention_mask:
            encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
                "input_ids"])

    return encoded_inputs


def split_page(encoded_inputs, max_seq_len=512):
    """
    truncate is often used in training process
    """
    for key in encoded_inputs:
        encoded_inputs[key] = paddle.to_tensor(encoded_inputs[key])
        if encoded_inputs[key].ndim <= 1:  # for input_ids, att_mask and so on
            encoded_inputs[key] = encoded_inputs[key].reshape([-1, max_seq_len])
        else:  # for bbox
            encoded_inputs[key] = encoded_inputs[key].reshape(
                [-1, max_seq_len, 4])
    return encoded_inputs


def preprocess(
        tokenizer,
        ori_img,
        ocr_info,
        img_size=(224, 224),
        pad_token_label_id=-100,
        max_seq_len=512,
        add_special_ids=False,
        return_attention_mask=True, ):
    ocr_info = deepcopy(ocr_info)
    height = ori_img.shape[0]
    width = ori_img.shape[1]

    img = cv2.resize(ori_img,
                     (224, 224)).transpose([2, 0, 1]).astype(np.float32)

    segment_offset_id = []
    words_list = []
    bbox_list = []
    input_ids_list = []
    token_type_ids_list = []

    for info in ocr_info:
        # x1, y1, x2, y2
        bbox = info["bbox"]
        bbox[0] = int(bbox[0] * 1000.0 / width)
        bbox[2] = int(bbox[2] * 1000.0 / width)
        bbox[1] = int(bbox[1] * 1000.0 / height)
        bbox[3] = int(bbox[3] * 1000.0 / height)

        text = info["text"]
        encode_res = tokenizer.encode(
            text, pad_to_max_seq_len=False, return_attention_mask=True)

        if not add_special_ids:
            # TODO: use tok.all_special_ids to remove
            encode_res["input_ids"] = encode_res["input_ids"][1:-1]
            encode_res["token_type_ids"] = encode_res["token_type_ids"][1:-1]
            encode_res["attention_mask"] = encode_res["attention_mask"][1:-1]

        input_ids_list.extend(encode_res["input_ids"])
        token_type_ids_list.extend(encode_res["token_type_ids"])
        bbox_list.extend([bbox] * len(encode_res["input_ids"]))
        words_list.append(text)
        segment_offset_id.append(len(input_ids_list))

    encoded_inputs = {
        "input_ids": input_ids_list,
        "token_type_ids": token_type_ids_list,
        "bbox": bbox_list,
        "attention_mask": [1] * len(input_ids_list),
    }

    encoded_inputs = pad_sentences(
        tokenizer,
        encoded_inputs,
        max_seq_len=max_seq_len,
        return_attention_mask=return_attention_mask)

    encoded_inputs = split_page(encoded_inputs)

    fake_bs = encoded_inputs["input_ids"].shape[0]

    encoded_inputs["image"] = paddle.to_tensor(img).unsqueeze(0).expand(
        [fake_bs] + list(img.shape))

    encoded_inputs["segment_offset_id"] = segment_offset_id

    return encoded_inputs


def postprocess(attention_mask, preds, label_map_path):
    if isinstance(preds, paddle.Tensor):
        preds = preds.numpy()
    preds = np.argmax(preds, axis=2)

    _, label_map = get_bio_label_maps(label_map_path)

    preds_list = [[] for _ in range(preds.shape[0])]

    # keep batch info
    for i in range(preds.shape[0]):
        for j in range(preds.shape[1]):
            if attention_mask[i][j] == 1:
                preds_list[i].append(label_map[preds[i][j]])

    return preds_list


def merge_preds_list_with_ocr_info(label_map_path, ocr_info, segment_offset_id,
                                   preds_list):
    # must ensure the preds_list is generated from the same image
    preds = [p for pred in preds_list for p in pred]
    label2id_map, _ = get_bio_label_maps(label_map_path)
    for key in label2id_map:
        if key.startswith("I-"):
            label2id_map[key] = label2id_map["B" + key[1:]]

    id2label_map = dict()
    for key in label2id_map:
        val = label2id_map[key]
        if key == "O":
            id2label_map[val] = key
        if key.startswith("B-") or key.startswith("I-"):
            id2label_map[val] = key[2:]
        else:
            id2label_map[val] = key

    for idx in range(len(segment_offset_id)):
        if idx == 0:
            start_id = 0
        else:
            start_id = segment_offset_id[idx - 1]

        end_id = segment_offset_id[idx]

        curr_pred = preds[start_id:end_id]
        curr_pred = [label2id_map[p] for p in curr_pred]

        if len(curr_pred) <= 0:
            pred_id = 0
        else:
            counts = np.bincount(curr_pred)
            pred_id = np.argmax(counts)
        ocr_info[idx]["pred_id"] = int(pred_id)
        ocr_info[idx]["pred"] = id2label_map[pred_id]
    return ocr_info


@paddle.no_grad()
def infer(args):
    os.makedirs(args.output_dir, exist_ok=True)

    # init token and model
    tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
    # model = LayoutXLMModel.from_pretrained(args.model_name_or_path)
    model = LayoutXLMForTokenClassification.from_pretrained(
        args.model_name_or_path)
    model.eval()

    # load ocr results json
    ocr_results = dict()
文幕地方's avatar
文幕地方 已提交
228
    with open(args.ocr_json_path, "r", encoding='utf-8') as fin:
littletomatodonkey's avatar
littletomatodonkey 已提交
229 230 231 232 233 234 235 236 237
        lines = fin.readlines()
        for line in lines:
            img_name, json_info = line.split("\t")
            ocr_results[os.path.basename(img_name)] = json.loads(json_info)

    # get infer img list
    infer_imgs = get_image_file_list(args.infer_imgs)

    # loop for infer
文幕地方's avatar
文幕地方 已提交
238 239 240 241
    with open(
            os.path.join(args.output_dir, "infer_results.txt"),
            "w",
            encoding='utf-8') as fout:
littletomatodonkey's avatar
littletomatodonkey 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        for idx, img_path in enumerate(infer_imgs):
            print("process: [{}/{}]".format(idx, len(infer_imgs), img_path))

            img = cv2.imread(img_path)

            ocr_info = ocr_results[os.path.basename(img_path)]["ocr_info"]
            inputs = preprocess(
                tokenizer=tokenizer,
                ori_img=img,
                ocr_info=ocr_info,
                max_seq_len=args.max_seq_length)

            outputs = model(
                input_ids=inputs["input_ids"],
                bbox=inputs["bbox"],
                image=inputs["image"],
                token_type_ids=inputs["token_type_ids"],
                attention_mask=inputs["attention_mask"])

            preds = outputs[0]
            preds = postprocess(inputs["attention_mask"], preds,
                                args.label_map_path)
            ocr_info = merge_preds_list_with_ocr_info(
                args.label_map_path, ocr_info, inputs["segment_offset_id"],
                preds)

            fout.write(img_path + "\t" + json.dumps(
                {
                    "ocr_info": ocr_info,
                }, ensure_ascii=False) + "\n")

            img_res = draw_ser_results(img, ocr_info)
            cv2.imwrite(
                os.path.join(args.output_dir, os.path.basename(img_path)),
                img_res)

    return


if __name__ == "__main__":
    args = parse_args()
    infer(args)