rec_postprocess.py 29.7 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

W
WenmuZhou 已提交
15 16 17
import numpy as np
import paddle
from paddle.nn import functional as F
A
andyjpaddle 已提交
18
import re
W
WenmuZhou 已提交
19 20 21 22 23


class BaseRecLabelDecode(object):
    """ Convert between text-label and text-index """

T
tink2123 已提交
24
    def __init__(self, character_dict_path=None, use_space_char=False):
T
tink2123 已提交
25 26 27
        self.beg_str = "sos"
        self.end_str = "eos"

T
tink2123 已提交
28 29
        self.character_str = []
        if character_dict_path is None:
W
WenmuZhou 已提交
30 31
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
T
tink2123 已提交
32
        else:
W
WenmuZhou 已提交
33 34 35 36
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
W
WenmuZhou 已提交
37
                    self.character_str.append(line)
W
WenmuZhou 已提交
38
            if use_space_char:
W
WenmuZhou 已提交
39
                self.character_str.append(" ")
W
WenmuZhou 已提交
40
            dict_character = list(self.character_str)
T
tink2123 已提交
41

W
WenmuZhou 已提交
42 43 44 45 46 47
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

48 49 50 51 52 53 54 55 56
        if 'arabic' in character_dict_path:
            self.reverse = True
        else:
            self.reverse = False

    def pred_reverse(self, pred):
        pred_re = []
        c_current = ''
        for c in pred:
T
Topdu 已提交
57
            if not bool(re.search('[a-zA-Z0-9 :*./%+-]', c)):
58 59 60 61 62 63 64 65 66 67 68
                if c_current != '':
                    pred_re.append(c_current)
                pred_re.append(c)
                c_current = ''
            else:
                c_current += c
        if c_current != '':
            pred_re.append(c_current)

        return ''.join(pred_re[::-1])

W
WenmuZhou 已提交
69 70 71
    def add_special_char(self, dict_character):
        return dict_character

L
littletomatodonkey 已提交
72
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
W
WenmuZhou 已提交
73 74 75 76 77
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
            selection = np.ones(len(text_index[batch_idx]), dtype=bool)
            if is_remove_duplicate:
                selection[1:] = text_index[batch_idx][1:] != text_index[
                    batch_idx][:-1]
            for ignored_token in ignored_tokens:
                selection &= text_index[batch_idx] != ignored_token

            char_list = [
                self.character[text_id]
                for text_id in text_index[batch_idx][selection]
            ]
            if text_prob is not None:
                conf_list = text_prob[batch_idx][selection]
            else:
                conf_list = [1] * len(selection)
            if len(conf_list) == 0:
                conf_list = [0]

W
WenmuZhou 已提交
96
            text = ''.join(char_list)
97 98 99 100

            if self.reverse:  # for arabic rec
                text = self.pred_reverse(text)

101
            result_list.append((text, np.mean(conf_list).tolist()))
W
WenmuZhou 已提交
102 103 104 105 106 107 108 109 110
        return result_list

    def get_ignored_tokens(self):
        return [0]  # for ctc blank


class CTCLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

T
tink2123 已提交
111
    def __init__(self, character_dict_path=None, use_space_char=False,
W
WenmuZhou 已提交
112 113
                 **kwargs):
        super(CTCLabelDecode, self).__init__(character_dict_path,
T
tink2123 已提交
114
                                             use_space_char)
W
WenmuZhou 已提交
115 116

    def __call__(self, preds, label=None, *args, **kwargs):
L
LDOUBLEV 已提交
117
        if isinstance(preds, tuple) or isinstance(preds, list):
118
            preds = preds[-1]
W
WenmuZhou 已提交
119 120
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
W
WenmuZhou 已提交
121 122
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
W
WenmuZhou 已提交
123
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
W
WenmuZhou 已提交
124 125
        if label is None:
            return text
L
littletomatodonkey 已提交
126
        label = self.decode(label)
W
WenmuZhou 已提交
127 128 129 130 131 132 133
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


littletomatodonkey's avatar
littletomatodonkey 已提交
134 135 136 137 138 139 140 141 142
class DistillationCTCLabelDecode(CTCLabelDecode):
    """
    Convert 
    Convert between text-label and text-index
    """

    def __init__(self,
                 character_dict_path=None,
                 use_space_char=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
143
                 model_name=["student"],
144
                 key=None,
A
andyjpaddle 已提交
145
                 multi_head=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
146
                 **kwargs):
T
tink2123 已提交
147 148
        super(DistillationCTCLabelDecode, self).__init__(character_dict_path,
                                                         use_space_char)
littletomatodonkey's avatar
littletomatodonkey 已提交
149 150
        if not isinstance(model_name, list):
            model_name = [model_name]
littletomatodonkey's avatar
littletomatodonkey 已提交
151
        self.model_name = model_name
littletomatodonkey's avatar
littletomatodonkey 已提交
152

153
        self.key = key
A
andyjpaddle 已提交
154
        self.multi_head = multi_head
littletomatodonkey's avatar
littletomatodonkey 已提交
155 156

    def __call__(self, preds, label=None, *args, **kwargs):
littletomatodonkey's avatar
littletomatodonkey 已提交
157 158 159 160 161
        output = dict()
        for name in self.model_name:
            pred = preds[name]
            if self.key is not None:
                pred = pred[self.key]
A
andyjpaddle 已提交
162 163
            if self.multi_head and isinstance(pred, dict):
                pred = pred['ctc']
littletomatodonkey's avatar
littletomatodonkey 已提交
164 165
            output[name] = super().__call__(pred, label=label, *args, **kwargs)
        return output
littletomatodonkey's avatar
littletomatodonkey 已提交
166 167


W
WenmuZhou 已提交
168 169 170
class AttnLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

T
tink2123 已提交
171
    def __init__(self, character_dict_path=None, use_space_char=False,
W
WenmuZhou 已提交
172 173
                 **kwargs):
        super(AttnLabelDecode, self).__init__(character_dict_path,
T
tink2123 已提交
174
                                              use_space_char)
W
WenmuZhou 已提交
175 176

    def add_special_char(self, dict_character):
L
LDOUBLEV 已提交
177 178 179 180
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = dict_character
        dict_character = [self.beg_str] + dict_character + [self.end_str]
W
WenmuZhou 已提交
181 182
        return dict_character

L
LDOUBLEV 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        [beg_idx, end_idx] = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(end_idx):
                    break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
A
andyjpaddle 已提交
202 203
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
L
LDOUBLEV 已提交
204 205 206 207 208
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
209
            result_list.append((text, np.mean(conf_list).tolist()))
L
LDOUBLEV 已提交
210 211
        return result_list

L
LDOUBLEV 已提交
212 213
    def __call__(self, preds, label=None, *args, **kwargs):
        """
W
WenmuZhou 已提交
214
        text = self.decode(text)
L
LDOUBLEV 已提交
215 216 217 218 219 220 221 222 223 224 225
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()

        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
L
LDOUBLEV 已提交
226
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
L
LDOUBLEV 已提交
227 228
        if label is None:
            return text
L
LDOUBLEV 已提交
229
        label = self.decode(label, is_remove_duplicate=False)
L
LDOUBLEV 已提交
230 231
        return text, label

W
WenmuZhou 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244
    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
M
MissPenguin 已提交
245
        return idx
T
tink2123 已提交
246 247


T
tink2123 已提交
248 249 250
class SEEDLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

T
tink2123 已提交
251
    def __init__(self, character_dict_path=None, use_space_char=False,
T
tink2123 已提交
252 253
                 **kwargs):
        super(SEEDLabelDecode, self).__init__(character_dict_path,
T
tink2123 已提交
254
                                              use_space_char)
T
tink2123 已提交
255 256

    def add_special_char(self, dict_character):
T
tink2123 已提交
257
        self.padding_str = "padding"
T
tink2123 已提交
258
        self.end_str = "eos"
T
tink2123 已提交
259 260 261 262
        self.unknown = "unknown"
        dict_character = dict_character + [
            self.end_str, self.padding_str, self.unknown
        ]
T
tink2123 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        return dict_character

    def get_ignored_tokens(self):
        end_idx = self.get_beg_end_flag_idx("eos")
        return [end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "sos":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "eos":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" % beg_or_end
        return idx

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        [end_idx] = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if int(text_index[batch_idx][idx]) == int(end_idx):
                    break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
301
            result_list.append((text, np.mean(conf_list).tolist()))
T
tink2123 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        """
        text = self.decode(text)
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
        preds_idx = preds["rec_pred"]
        if isinstance(preds_idx, paddle.Tensor):
            preds_idx = preds_idx.numpy()
        if "rec_pred_scores" in preds:
            preds_idx = preds["rec_pred"]
            preds_prob = preds["rec_pred_scores"]
        else:
            preds_idx = preds["rec_pred"].argmax(axis=2)
            preds_prob = preds["rec_pred"].max(axis=2)
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
        if label is None:
            return text
        label = self.decode(label, is_remove_duplicate=False)
        return text, label


T
tink2123 已提交
329 330 331
class SRNLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

T
tink2123 已提交
332
    def __init__(self, character_dict_path=None, use_space_char=False,
T
tink2123 已提交
333 334
                 **kwargs):
        super(SRNLabelDecode, self).__init__(character_dict_path,
T
tink2123 已提交
335
                                             use_space_char)
336
        self.max_text_length = kwargs.get('max_text_length', 25)
T
tink2123 已提交
337 338 339 340 341 342 343 344 345 346 347

    def __call__(self, preds, label=None, *args, **kwargs):
        pred = preds['predict']
        char_num = len(self.character_str) + 2
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = np.reshape(pred, [-1, char_num])

        preds_idx = np.argmax(pred, axis=1)
        preds_prob = np.max(pred, axis=1)

348
        preds_idx = np.reshape(preds_idx, [-1, self.max_text_length])
T
tink2123 已提交
349

350
        preds_prob = np.reshape(preds_prob, [-1, self.max_text_length])
T
tink2123 已提交
351

T
tink2123 已提交
352
        text = self.decode(preds_idx, preds_prob)
T
tink2123 已提交
353 354

        if label is None:
L
LDOUBLEV 已提交
355
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
T
tink2123 已提交
356
            return text
T
tink2123 已提交
357
        label = self.decode(label)
T
tink2123 已提交
358 359
        return text, label

L
LDOUBLEV 已提交
360
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
T
tink2123 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)

        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)

            text = ''.join(char_list)
385
            result_list.append((text, np.mean(conf_list).tolist()))
T
tink2123 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
        return result_list

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
W
WenmuZhou 已提交
406 407


A
andyjpaddle 已提交
408 409 410
class SARLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

T
tink2123 已提交
411
    def __init__(self, character_dict_path=None, use_space_char=False,
A
andyjpaddle 已提交
412 413
                 **kwargs):
        super(SARLabelDecode, self).__init__(character_dict_path,
T
tink2123 已提交
414
                                             use_space_char)
A
andyjpaddle 已提交
415

A
andyjpaddle 已提交
416
        self.rm_symbol = kwargs.get('rm_symbol', False)
A
andyjpaddle 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1
        return dict_character

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
A
andyjpaddle 已提交
435

A
andyjpaddle 已提交
436 437 438 439 440 441 442 443
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(self.end_idx):
A
andyjpaddle 已提交
444
                    if text_prob is None and idx == 0:
A
andyjpaddle 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
                        continue
                    else:
                        break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
460 461 462 463
            if self.rm_symbol:
                comp = re.compile('[^A-Z^a-z^0-9^\u4e00-\u9fa5]')
                text = text.lower()
                text = comp.sub('', text)
464
            result_list.append((text, np.mean(conf_list).tolist()))
A
andyjpaddle 已提交
465 466 467 468 469 470 471
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
A
andyjpaddle 已提交
472

A
andyjpaddle 已提交
473 474 475 476 477 478 479 480 481
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)

        if label is None:
            return text
        label = self.decode(label, is_remove_duplicate=False)
        return text, label

    def get_ignored_tokens(self):
        return [self.padding_idx]
482 483


A
andyjpaddle 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
class DistillationSARLabelDecode(SARLabelDecode):
    """
    Convert 
    Convert between text-label and text-index
    """

    def __init__(self,
                 character_dict_path=None,
                 use_space_char=False,
                 model_name=["student"],
                 key=None,
                 multi_head=False,
                 **kwargs):
        super(DistillationSARLabelDecode, self).__init__(character_dict_path,
                                                         use_space_char)
        if not isinstance(model_name, list):
            model_name = [model_name]
        self.model_name = model_name

        self.key = key
        self.multi_head = multi_head

    def __call__(self, preds, label=None, *args, **kwargs):
        output = dict()
        for name in self.model_name:
            pred = preds[name]
            if self.key is not None:
                pred = pred[self.key]
            if self.multi_head and isinstance(pred, dict):
                pred = pred['sar']
            output[name] = super().__call__(pred, label=label, *args, **kwargs)
        return output


518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
class PRENLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self, character_dict_path=None, use_space_char=False,
                 **kwargs):
        super(PRENLabelDecode, self).__init__(character_dict_path,
                                              use_space_char)

    def add_special_char(self, dict_character):
        padding_str = '<PAD>'  # 0 
        end_str = '<EOS>'  # 1
        unknown_str = '<UNK>'  # 2

        dict_character = [padding_str, end_str, unknown_str] + dict_character
        self.padding_idx = 0
        self.end_idx = 1
        self.unknown_idx = 2

        return dict_character

    def decode(self, text_index, text_prob=None):
        """ convert text-index into text-label. """
        result_list = []
        batch_size = len(text_index)

        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] == self.end_idx:
                    break
                if text_index[batch_idx][idx] in \
                    [self.padding_idx, self.unknown_idx]:
                    continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)

            text = ''.join(char_list)
            if len(text) > 0:
561
                result_list.append((text, np.mean(conf_list).tolist()))
562 563 564 565 566 567 568 569 570 571 572 573 574 575
            else:
                # here confidence of empty recog result is 1
                result_list.append(('', 1))
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        preds = preds.numpy()
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
        text = self.decode(preds_idx, preds_prob)
        if label is None:
            return text
        label = self.decode(label)
        return text, label
xuyang2233's avatar
add pr  
xuyang2233 已提交
576

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694

class NRTRLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self, character_dict_path=None, use_space_char=True, **kwargs):
        super(NRTRLabelDecode, self).__init__(character_dict_path,
                                              use_space_char)

    def __call__(self, preds, label=None, *args, **kwargs):

        if len(preds) == 2:
            preds_id = preds[0]
            preds_prob = preds[1]
            if isinstance(preds_id, paddle.Tensor):
                preds_id = preds_id.numpy()
            if isinstance(preds_prob, paddle.Tensor):
                preds_prob = preds_prob.numpy()
            if preds_id[0][0] == 2:
                preds_idx = preds_id[:, 1:]
                preds_prob = preds_prob[:, 1:]
            else:
                preds_idx = preds_id
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
            if label is None:
                return text
            label = self.decode(label[:, 1:])
        else:
            if isinstance(preds, paddle.Tensor):
                preds = preds.numpy()
            preds_idx = preds.argmax(axis=2)
            preds_prob = preds.max(axis=2)
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
            if label is None:
                return text
            label = self.decode(label[:, 1:])
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
        return dict_character

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                try:
                    char_idx = self.character[int(text_index[batch_idx][idx])]
                except:
                    continue
                if char_idx == '</s>':  # end
                    break
                char_list.append(char_idx)
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text.lower(), np.mean(conf_list).tolist()))
        return result_list


class ViTSTRLabelDecode(NRTRLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self, character_dict_path=None, use_space_char=False,
                 **kwargs):
        super(ViTSTRLabelDecode, self).__init__(character_dict_path,
                                                use_space_char)

    def __call__(self, preds, label=None, *args, **kwargs):
        if isinstance(preds, paddle.Tensor):
            preds = preds[:, 1:].numpy()
        else:
            preds = preds[:, 1:]
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
        if label is None:
            return text
        label = self.decode(label[:, 1:])
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['<s>', '</s>'] + dict_character
        return dict_character


class ABINetLabelDecode(NRTRLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self, character_dict_path=None, use_space_char=False,
                 **kwargs):
        super(ABINetLabelDecode, self).__init__(character_dict_path,
                                                use_space_char)

    def __call__(self, preds, label=None, *args, **kwargs):
        if isinstance(preds, dict):
            preds = preds['align'][-1].numpy()
        elif isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
        else:
            preds = preds

        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
        if label is None:
            return text
        label = self.decode(label)
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['</s>'] + dict_character
        return dict_character
xuyang2233's avatar
xuyang2233 已提交
695

A
andyjpaddle 已提交
696

697
class SPINLabelDecode(AttnLabelDecode):
xuyang2233's avatar
add pr  
xuyang2233 已提交
698 699 700 701
    """ Convert between text-label and text-index """

    def __init__(self, character_dict_path=None, use_space_char=False,
                 **kwargs):
702
        super(SPINLabelDecode, self).__init__(character_dict_path,
xuyang2233's avatar
add pr  
xuyang2233 已提交
703 704 705 706 707 708 709
                                              use_space_char)

    def add_special_char(self, dict_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = dict_character
        dict_character = [self.beg_str] + [self.end_str] + dict_character
A
andyjpaddle 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
        return dict_character


class VLLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self, character_dict_path=None, use_space_char=False,
                 **kwargs):
        super(VLLabelDecode, self).__init__(character_dict_path, use_space_char)
        self.max_text_length = kwargs.get('max_text_length', 25)
        self.nclass = len(self.character) + 1
        self.character = self.character[10:] + self.character[
            1:10] + [self.character[0]]

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            selection = np.ones(len(text_index[batch_idx]), dtype=bool)
            if is_remove_duplicate:
                selection[1:] = text_index[batch_idx][1:] != text_index[
                    batch_idx][:-1]
            for ignored_token in ignored_tokens:
                selection &= text_index[batch_idx] != ignored_token

            char_list = [
                self.character[text_id - 1]
                for text_id in text_index[batch_idx][selection]
            ]
            if text_prob is not None:
                conf_list = text_prob[batch_idx][selection]
            else:
                conf_list = [1] * len(selection)
            if len(conf_list) == 0:
                conf_list = [0]

            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list).tolist()))
        return result_list

    def __call__(self, preds, label=None, length=None, *args, **kwargs):
        if len(preds) == 2:  # eval mode
            text_pre, x = preds
            b = text_pre.shape[1]
            lenText = self.max_text_length
            nsteps = self.max_text_length

            if not isinstance(text_pre, paddle.Tensor):
                text_pre = paddle.to_tensor(text_pre, dtype='float32')

            out_res = paddle.zeros(
                shape=[lenText, b, self.nclass], dtype=x.dtype)
            out_length = paddle.zeros(shape=[b], dtype=x.dtype)
            now_step = 0
            for _ in range(nsteps):
                if 0 in out_length and now_step < nsteps:
                    tmp_result = text_pre[now_step, :, :]
                    out_res[now_step] = tmp_result
                    tmp_result = tmp_result.topk(1)[1].squeeze(axis=1)
                    for j in range(b):
                        if out_length[j] == 0 and tmp_result[j] == 0:
                            out_length[j] = now_step + 1
                    now_step += 1
            for j in range(0, b):
                if int(out_length[j]) == 0:
                    out_length[j] = nsteps
            start = 0
            output = paddle.zeros(
                shape=[int(out_length.sum()), self.nclass], dtype=x.dtype)
            for i in range(0, b):
                cur_length = int(out_length[i])
                output[start:start + cur_length] = out_res[0:cur_length, i, :]
                start += cur_length
            net_out = output
            length = out_length

        else:  # train mode
            net_out = preds[0]
            length = length
            net_out = paddle.concat([t[:l] for t, l in zip(net_out, length)])
        text = []
        if not isinstance(net_out, paddle.Tensor):
            net_out = paddle.to_tensor(net_out, dtype='float32')
        net_out = F.softmax(net_out, axis=1)
        for i in range(0, length.shape[0]):
            preds_idx = net_out[int(length[:i].sum()):int(length[:i].sum(
            ) + length[i])].topk(1)[1][:, 0].tolist()
            preds_text = ''.join([
                self.character[idx - 1]
                if idx > 0 and idx <= len(self.character) else ''
                for idx in preds_idx
            ])
            preds_prob = net_out[int(length[:i].sum()):int(length[:i].sum(
            ) + length[i])].topk(1)[0][:, 0]
            preds_prob = paddle.exp(
                paddle.log(preds_prob).sum() / (preds_prob.shape[0] + 1e-6))
            text.append((preds_text, preds_prob))
        if label is None:
            return text
        label = self.decode(label)
        return text, label