det_r50_vd_dcn_fce_ctw.yml 3.2 KB
Newer Older
z37757's avatar
z37757 已提交
1 2 3 4 5
Global:
  use_gpu: true
  epoch_num: 1500
  log_smooth_window: 20
  print_batch_step: 20
z37757's avatar
z37757 已提交
6
  save_model_dir: ./output/det_r50_dcn_fce_ctw/
z37757's avatar
z37757 已提交
7 8 9 10
  save_epoch_step: 100
  # evaluation is run every 835 iterations
  eval_batch_step: [0, 835]
  cal_metric_during_train: False
z37757's avatar
z37757 已提交
11
  pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained 
z37757's avatar
z37757 已提交
12
  checkpoints: 
z37757's avatar
z37757 已提交
13 14 15
  save_inference_dir: 
  use_visualdl: False
  infer_img: doc/imgs_en/img_10.jpg
z37757's avatar
z37757 已提交
16
  save_res_path: ./output/det_fce/predicts_fce.txt
z37757's avatar
z37757 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56


Architecture:
  model_type: det
  algorithm: FCE
  Transform:
  Backbone:
    name: ResNet
    layers: 50
    dcn_stage: [False, True, True, True]
    out_indices: [1,2,3]
  Neck:
    name: FCEFPN
    out_channels: 256
    has_extra_convs: False
    extra_stage: 0
  Head:
    name: FCEHead
    fourier_degree: 5
Loss:
  name: FCELoss
  fourier_degree: 5
  num_sample: 50
  
Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    learning_rate: 0.0001
  regularizer:
    name: 'L2'
    factor: 0

PostProcess:
  name: FCEPostProcess
  scales: [8, 16, 32]
  alpha: 1.0
  beta: 1.0
  fourier_degree: 5
文幕地方's avatar
文幕地方 已提交
57
  box_type: 'poly'
z37757's avatar
z37757 已提交
58 59 60 61 62 63 64 65

Metric:
  name: DetFCEMetric
  main_indicator: hmean

Train:
  dataset:
    name: SimpleDataSet
z37757's avatar
z37757 已提交
66
    data_dir: ./train_data/ctw1500/imgs/
z37757's avatar
z37757 已提交
67
    label_file_list: 
z37757's avatar
z37757 已提交
68
      - ./train_data/ctw1500/imgs/training.txt
z37757's avatar
z37757 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
          ignore_orientation: True
      - DetLabelEncode: # Class handling label
      - ColorJitter: 
          brightness: 0.142
          saturation: 0.5
          contrast: 0.5
      - RandomScaling: 
      - RandomCropFlip:
          crop_ratio: 0.5
      - RandomCropPolyInstances:
          crop_ratio: 0.8
          min_side_ratio: 0.3
      - RandomRotatePolyInstances:
          rotate_ratio: 0.5
          max_angle: 30
          pad_with_fixed_color: False
      - SquareResizePad:
          target_size: 800
          pad_ratio: 0.6
      - IaaAugment:
          augmenter_args:
            - { 'type': Fliplr, 'args': { 'p': 0.5 } }
      - FCENetTargets:
          fourier_degree: 5
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'p3_maps', 'p4_maps', 'p5_maps'] # dataloader will return list in this order
  loader:
    shuffle: True
    drop_last: False
    batch_size_per_card: 6
    num_workers: 8

Eval:
  dataset:
    name: SimpleDataSet
z37757's avatar
z37757 已提交
114
    data_dir: ./train_data/ctw1500/imgs/
z37757's avatar
z37757 已提交
115
    label_file_list:
z37757's avatar
z37757 已提交
116
      - ./train_data/ctw1500/imgs/test.txt
z37757's avatar
z37757 已提交
117 118 119 120 121 122 123
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
          ignore_orientation: True
      - DetLabelEncode: # Class handling label
      - DetResizeForTest:
文幕地方's avatar
文幕地方 已提交
124 125
          limit_type: 'min'
          limit_side_len: 736
z37757's avatar
z37757 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - Pad: 
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 1 # must be 1
    num_workers: 2