east_postprocess.py 4.8 KB
Newer Older
M
MissPenguin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
from .locality_aware_nms import nms_locality
import cv2
M
MissPenguin 已提交
22
import paddle
文幕地方's avatar
文幕地方 已提交
23
import lanms
M
MissPenguin 已提交
24 25 26 27 28 29 30 31 32

import os
import sys


class EASTPostProcess(object):
    """
    The post process for EAST.
    """
文幕地方's avatar
文幕地方 已提交
33

M
MissPenguin 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    def __init__(self,
                 score_thresh=0.8,
                 cover_thresh=0.1,
                 nms_thresh=0.2,
                 **kwargs):

        self.score_thresh = score_thresh
        self.cover_thresh = cover_thresh
        self.nms_thresh = nms_thresh

    def restore_rectangle_quad(self, origin, geometry):
        """
        Restore rectangle from quadrangle.
        """
        # quad
        origin_concat = np.concatenate(
            (origin, origin, origin, origin), axis=1)  # (n, 8)
        pred_quads = origin_concat - geometry
        pred_quads = pred_quads.reshape((-1, 4, 2))  # (n, 4, 2)
        return pred_quads

    def detect(self,
               score_map,
               geo_map,
               score_thresh=0.8,
               cover_thresh=0.1,
               nms_thresh=0.2):
        """
        restore text boxes from score map and geo map
        """
        score_map = score_map[0]
        geo_map = np.swapaxes(geo_map, 1, 0)
        geo_map = np.swapaxes(geo_map, 1, 2)
        # filter the score map
        xy_text = np.argwhere(score_map > score_thresh)
        if len(xy_text) == 0:
            return []
        # sort the text boxes via the y axis
        xy_text = xy_text[np.argsort(xy_text[:, 0])]
        #restore quad proposals
        text_box_restored = self.restore_rectangle_quad(
            xy_text[:, ::-1] * 4, geo_map[xy_text[:, 0], xy_text[:, 1], :])
        boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
        boxes[:, :8] = text_box_restored.reshape((-1, 8))
        boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
文幕地方's avatar
文幕地方 已提交
79 80
        boxes = lanms.merge_quadrangle_n9(boxes, nms_thresh)
        # boxes = nms_locality(boxes.astype(np.float64), nms_thresh)
M
MissPenguin 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        if boxes.shape[0] == 0:
            return []
        # Here we filter some low score boxes by the average score map, 
        #   this is different from the orginal paper.
        for i, box in enumerate(boxes):
            mask = np.zeros_like(score_map, dtype=np.uint8)
            cv2.fillPoly(mask, box[:8].reshape(
                (-1, 4, 2)).astype(np.int32) // 4, 1)
            boxes[i, 8] = cv2.mean(score_map, mask)[0]
        boxes = boxes[boxes[:, 8] > cover_thresh]
        return boxes

    def sort_poly(self, p):
        """
        Sort polygons.
        """
        min_axis = np.argmin(np.sum(p, axis=1))
        p = p[[min_axis, (min_axis + 1) % 4,\
            (min_axis + 2) % 4, (min_axis + 3) % 4]]
        if abs(p[0, 0] - p[1, 0]) > abs(p[0, 1] - p[1, 1]):
            return p
        else:
            return p[[0, 3, 2, 1]]

    def __call__(self, outs_dict, shape_list):
        score_list = outs_dict['f_score']
        geo_list = outs_dict['f_geo']
M
MissPenguin 已提交
108 109 110
        if isinstance(score_list, paddle.Tensor):
            score_list = score_list.numpy()
            geo_list = geo_list.numpy()
M
MissPenguin 已提交
111 112 113
        img_num = len(shape_list)
        dt_boxes_list = []
        for ino in range(img_num):
M
MissPenguin 已提交
114 115
            score = score_list[ino]
            geo = geo_list[ino]
M
MissPenguin 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
            boxes = self.detect(
                score_map=score,
                geo_map=geo,
                score_thresh=self.score_thresh,
                cover_thresh=self.cover_thresh,
                nms_thresh=self.nms_thresh)
            boxes_norm = []
            if len(boxes) > 0:
                h, w = score.shape[1:]
                src_h, src_w, ratio_h, ratio_w = shape_list[ino]
                boxes = boxes[:, :8].reshape((-1, 4, 2))
                boxes[:, :, 0] /= ratio_w
                boxes[:, :, 1] /= ratio_h
                for i_box, box in enumerate(boxes):
                    box = self.sort_poly(box.astype(np.int32))
                    if np.linalg.norm(box[0] - box[1]) < 5 \
                        or np.linalg.norm(box[3] - box[0]) < 5:
                        continue
                    boxes_norm.append(box)
            dt_boxes_list.append({'points': np.array(boxes_norm)})
文幕地方's avatar
文幕地方 已提交
136
        return dt_boxes_list