rec_visionlan_head.py 17.7 KB
Newer Older
A
add vl  
andyjpaddle 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
A
add ref  
andyjpaddle 已提交
14 15 16 17
"""
This code is refer from: 
https://github.com/wangyuxin87/VisionLAN
"""
A
add vl  
andyjpaddle 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, XavierNormal
import numpy as np


class PositionalEncoding(nn.Layer):
    def __init__(self, d_hid, n_position=200):
        super(PositionalEncoding, self).__init__()
        self.register_buffer(
            'pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))

    def _get_sinusoid_encoding_table(self, n_position, d_hid):
        ''' Sinusoid position encoding table '''

        def get_position_angle_vec(position):
            return [
                position / np.power(10000, 2 * (hid_j // 2) / d_hid)
                for hid_j in range(d_hid)
            ]

        sinusoid_table = np.array(
            [get_position_angle_vec(pos_i) for pos_i in range(n_position)])
        sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
        sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1
        sinusoid_table = paddle.to_tensor(sinusoid_table, dtype='float32')
        sinusoid_table = paddle.unsqueeze(sinusoid_table, axis=0)
        return sinusoid_table

    def forward(self, x):
        return x + self.pos_table[:, :x.shape[1]].clone().detach()


class ScaledDotProductAttention(nn.Layer):
    "Scaled Dot-Product Attention"

    def __init__(self, temperature, attn_dropout=0.1):
        super(ScaledDotProductAttention, self).__init__()
        self.temperature = temperature
        self.dropout = nn.Dropout(attn_dropout)
        self.softmax = nn.Softmax(axis=2)

    def forward(self, q, k, v, mask=None):
        k = paddle.transpose(k, perm=[0, 2, 1])
        attn = paddle.bmm(q, k)
        attn = attn / self.temperature
        if mask is not None:
            attn = attn.masked_fill(mask, -1e9)
            if mask.dim() == 3:
                mask = paddle.unsqueeze(mask, axis=1)
            elif mask.dim() == 2:
                mask = paddle.unsqueeze(mask, axis=1)
                mask = paddle.unsqueeze(mask, axis=1)
            repeat_times = [
                attn.shape[1] // mask.shape[1], attn.shape[2] // mask.shape[2]
            ]
            mask = paddle.tile(mask, [1, repeat_times[0], repeat_times[1], 1])
            attn[mask == 0] = -1e9
        attn = self.softmax(attn)
        attn = self.dropout(attn)
        output = paddle.bmm(attn, v)
        return output


class MultiHeadAttention(nn.Layer):
    " Multi-Head Attention module"

    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        super(MultiHeadAttention, self).__init__()
        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v
        self.w_qs = nn.Linear(
            d_model,
            n_head * d_k,
            weight_attr=ParamAttr(initializer=Normal(
                mean=0, std=np.sqrt(2.0 / (d_model + d_k)))))
        self.w_ks = nn.Linear(
            d_model,
            n_head * d_k,
            weight_attr=ParamAttr(initializer=Normal(
                mean=0, std=np.sqrt(2.0 / (d_model + d_k)))))
        self.w_vs = nn.Linear(
            d_model,
            n_head * d_v,
            weight_attr=ParamAttr(initializer=Normal(
                mean=0, std=np.sqrt(2.0 / (d_model + d_v)))))

        self.attention = ScaledDotProductAttention(temperature=np.power(d_k,
                                                                        0.5))
        self.layer_norm = nn.LayerNorm(d_model)
        self.fc = nn.Linear(
            n_head * d_v,
            d_model,
            weight_attr=ParamAttr(initializer=XavierNormal()))
        self.dropout = nn.Dropout(dropout)

    def forward(self, q, k, v, mask=None):
        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
        sz_b, len_q, _ = q.shape
        sz_b, len_k, _ = k.shape
        sz_b, len_v, _ = v.shape
        residual = q

        q = self.w_qs(q)
        q = paddle.reshape(
            q, shape=[-1, len_q, n_head, d_k])  # 4*21*512 ---- 4*21*8*64
        k = self.w_ks(k)
        k = paddle.reshape(k, shape=[-1, len_k, n_head, d_k])
        v = self.w_vs(v)
        v = paddle.reshape(v, shape=[-1, len_v, n_head, d_v])

        q = paddle.transpose(q, perm=[2, 0, 1, 3])
        q = paddle.reshape(q, shape=[-1, len_q, d_k])  # (n*b) x lq x dk
        k = paddle.transpose(k, perm=[2, 0, 1, 3])
        k = paddle.reshape(k, shape=[-1, len_k, d_k])  # (n*b) x lk x dk
        v = paddle.transpose(v, perm=[2, 0, 1, 3])
        v = paddle.reshape(v, shape=[-1, len_v, d_v])  # (n*b) x lv x dv

        mask = paddle.tile(
            mask,
            [n_head, 1, 1]) if mask is not None else None  # (n*b) x .. x ..
        output = self.attention(q, k, v, mask=mask)
        output = paddle.reshape(output, shape=[n_head, -1, len_q, d_v])
        output = paddle.transpose(output, perm=[1, 2, 0, 3])
        output = paddle.reshape(
            output, shape=[-1, len_q, n_head * d_v])  # b x lq x (n*dv)
        output = self.dropout(self.fc(output))
        output = self.layer_norm(output + residual)
        return output


class PositionwiseFeedForward(nn.Layer):
    def __init__(self, d_in, d_hid, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Conv1D(d_in, d_hid, 1)  # position-wise
        self.w_2 = nn.Conv1D(d_hid, d_in, 1)  # position-wise
        self.layer_norm = nn.LayerNorm(d_in)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        residual = x
        x = paddle.transpose(x, perm=[0, 2, 1])
        x = self.w_2(F.relu(self.w_1(x)))
        x = paddle.transpose(x, perm=[0, 2, 1])
        x = self.dropout(x)
        x = self.layer_norm(x + residual)
        return x


class EncoderLayer(nn.Layer):
    ''' Compose with two layers '''

    def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
        super(EncoderLayer, self).__init__()
        self.slf_attn = MultiHeadAttention(
            n_head, d_model, d_k, d_v, dropout=dropout)
        self.pos_ffn = PositionwiseFeedForward(
            d_model, d_inner, dropout=dropout)

    def forward(self, enc_input, slf_attn_mask=None):
        enc_output = self.slf_attn(
            enc_input, enc_input, enc_input, mask=slf_attn_mask)
        enc_output = self.pos_ffn(enc_output)
        return enc_output


class Transformer_Encoder(nn.Layer):
    def __init__(self,
                 n_layers=2,
                 n_head=8,
                 d_word_vec=512,
                 d_k=64,
                 d_v=64,
                 d_model=512,
                 d_inner=2048,
                 dropout=0.1,
                 n_position=256):
        super(Transformer_Encoder, self).__init__()
        self.position_enc = PositionalEncoding(
            d_word_vec, n_position=n_position)
        self.dropout = nn.Dropout(p=dropout)
        self.layer_stack = nn.LayerList([
            EncoderLayer(
                d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
            for _ in range(n_layers)
        ])
        self.layer_norm = nn.LayerNorm(d_model, epsilon=1e-6)

    def forward(self, enc_output, src_mask, return_attns=False):
        enc_output = self.dropout(
            self.position_enc(enc_output))  # position embeding
        for enc_layer in self.layer_stack:
            enc_output = enc_layer(enc_output, slf_attn_mask=src_mask)
        enc_output = self.layer_norm(enc_output)
        return enc_output


class PP_layer(nn.Layer):
    def __init__(self, n_dim=512, N_max_character=25, n_position=256):

        super(PP_layer, self).__init__()
        self.character_len = N_max_character
        self.f0_embedding = nn.Embedding(N_max_character, n_dim)
        self.w0 = nn.Linear(N_max_character, n_position)
        self.wv = nn.Linear(n_dim, n_dim)
        self.we = nn.Linear(n_dim, N_max_character)
        self.active = nn.Tanh()
        self.softmax = nn.Softmax(axis=2)

    def forward(self, enc_output):
        # enc_output: b,256,512
        reading_order = paddle.arange(self.character_len, dtype='int64')
        reading_order = reading_order.unsqueeze(0).expand(
A
andyjpaddle 已提交
239
            [enc_output.shape[0], self.character_len])  # (S,) -> (B, S)
A
add vl  
andyjpaddle 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        reading_order = self.f0_embedding(reading_order)  # b,25,512

        # calculate attention
        reading_order = paddle.transpose(reading_order, perm=[0, 2, 1])
        t = self.w0(reading_order)  # b,512,256
        t = self.active(
            paddle.transpose(
                t, perm=[0, 2, 1]) + self.wv(enc_output))  # b,256,512
        t = self.we(t)  # b,256,25
        t = self.softmax(paddle.transpose(t, perm=[0, 2, 1]))  # b,25,256
        g_output = paddle.bmm(t, enc_output)  # b,25,512
        return g_output


class Prediction(nn.Layer):
    def __init__(self,
                 n_dim=512,
                 n_position=256,
                 N_max_character=25,
                 n_class=37):
        super(Prediction, self).__init__()
        self.pp = PP_layer(
            n_dim=n_dim, N_max_character=N_max_character, n_position=n_position)
        self.pp_share = PP_layer(
            n_dim=n_dim, N_max_character=N_max_character, n_position=n_position)
        self.w_vrm = nn.Linear(n_dim, n_class)  # output layer
        self.w_share = nn.Linear(n_dim, n_class)  # output layer
        self.nclass = n_class

    def forward(self, cnn_feature, f_res, f_sub, train_mode=False,
                use_mlm=True):
        if train_mode:
            if not use_mlm:
                g_output = self.pp(cnn_feature)  # b,25,512
                g_output = self.w_vrm(g_output)
                f_res = 0
                f_sub = 0
                return g_output, f_res, f_sub
            g_output = self.pp(cnn_feature)  # b,25,512
            f_res = self.pp_share(f_res)
            f_sub = self.pp_share(f_sub)
            g_output = self.w_vrm(g_output)
            f_res = self.w_share(f_res)
            f_sub = self.w_share(f_sub)
            return g_output, f_res, f_sub
        else:
            g_output = self.pp(cnn_feature)  # b,25,512
            g_output = self.w_vrm(g_output)
            return g_output


class MLM(nn.Layer):
    "Architecture of MLM"

    def __init__(self, n_dim=512, n_position=256, max_text_length=25):
        super(MLM, self).__init__()
        self.MLM_SequenceModeling_mask = Transformer_Encoder(
            n_layers=2, n_position=n_position)
        self.MLM_SequenceModeling_WCL = Transformer_Encoder(
            n_layers=1, n_position=n_position)
        self.pos_embedding = nn.Embedding(max_text_length, n_dim)
        self.w0_linear = nn.Linear(1, n_position)
        self.wv = nn.Linear(n_dim, n_dim)
        self.active = nn.Tanh()
        self.we = nn.Linear(n_dim, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x, label_pos):
        # transformer unit for generating mask_c
        feature_v_seq = self.MLM_SequenceModeling_mask(x, src_mask=None)
        # position embedding layer
        label_pos = paddle.to_tensor(label_pos, dtype='int64')
        pos_emb = self.pos_embedding(label_pos)
        pos_emb = self.w0_linear(paddle.unsqueeze(pos_emb, axis=2))
        pos_emb = paddle.transpose(pos_emb, perm=[0, 2, 1])
        # fusion position embedding with features V & generate mask_c
        att_map_sub = self.active(pos_emb + self.wv(feature_v_seq))
        att_map_sub = self.we(att_map_sub)  # b,256,1
        att_map_sub = paddle.transpose(att_map_sub, perm=[0, 2, 1])
        att_map_sub = self.sigmoid(att_map_sub)  # b,1,256
        # WCL
        ## generate inputs for WCL
        att_map_sub = paddle.transpose(att_map_sub, perm=[0, 2, 1])
        f_res = x * (1 - att_map_sub)  # second path with remaining string
        f_sub = x * att_map_sub  # first path with occluded character
        ## transformer units in WCL
        f_res = self.MLM_SequenceModeling_WCL(f_res, src_mask=None)
        f_sub = self.MLM_SequenceModeling_WCL(f_sub, src_mask=None)
        return f_res, f_sub, att_map_sub


def trans_1d_2d(x):
    b, w_h, c = x.shape  # b, 256, 512
    x = paddle.transpose(x, perm=[0, 2, 1])
    x = paddle.reshape(x, [-1, c, 32, 8])
    x = paddle.transpose(x, perm=[0, 1, 3, 2])  # [b, c, 8, 32]
    return x


class MLM_VRM(nn.Layer):
    """
    MLM+VRM, MLM is only used in training.
    ratio controls the occluded number in a batch.
    The pipeline of VisionLAN in testing is very concise with only a backbone + sequence modeling(transformer unit) + prediction layer(pp layer).
    x: input image
    label_pos: character index
    training_step: LF or LA process
    output
    text_pre: prediction of VRM
    test_rem: prediction of remaining string in MLM
    text_mas: prediction of occluded character in MLM
    mask_c_show: visualization of Mask_c
    """

    def __init__(self,
                 n_layers=3,
                 n_position=256,
                 n_dim=512,
                 max_text_length=25,
                 nclass=37):
        super(MLM_VRM, self).__init__()
        self.MLM = MLM(n_dim=n_dim,
                       n_position=n_position,
                       max_text_length=max_text_length)
        self.SequenceModeling = Transformer_Encoder(
            n_layers=n_layers, n_position=n_position)
        self.Prediction = Prediction(
            n_dim=n_dim,
            n_position=n_position,
            N_max_character=max_text_length +
            1,  # N_max_character = 1 eos + 25 characters
            n_class=nclass)
        self.nclass = nclass
        self.max_text_length = max_text_length

    def forward(self, x, label_pos, training_step, train_mode=False):
        b, c, h, w = x.shape
        nT = self.max_text_length
        x = paddle.transpose(x, perm=[0, 1, 3, 2])
        x = paddle.reshape(x, [-1, c, h * w])
        x = paddle.transpose(x, perm=[0, 2, 1])
        if train_mode:
            if training_step == 'LF_1':
                f_res = 0
                f_sub = 0
                x = self.SequenceModeling(x, src_mask=None)
                text_pre, test_rem, text_mas = self.Prediction(
                    x, f_res, f_sub, train_mode=True, use_mlm=False)
                return text_pre, text_pre, text_pre, text_pre
            elif training_step == 'LF_2':
                # MLM
                f_res, f_sub, mask_c = self.MLM(x, label_pos)
                x = self.SequenceModeling(x, src_mask=None)
                text_pre, test_rem, text_mas = self.Prediction(
                    x, f_res, f_sub, train_mode=True)
                mask_c_show = trans_1d_2d(mask_c)
                return text_pre, test_rem, text_mas, mask_c_show
            elif training_step == 'LA':
                # MLM
                f_res, f_sub, mask_c = self.MLM(x, label_pos)
                ## use the mask_c (1 for occluded character and 0 for remaining characters) to occlude input
                ## ratio controls the occluded number in a batch
                character_mask = paddle.zeros_like(mask_c)

                ratio = b // 2
                if ratio >= 1:
                    with paddle.no_grad():
                        character_mask[0:ratio, :, :] = mask_c[0:ratio, :, :]
                else:
                    character_mask = mask_c
                x = x * (1 - character_mask)
                # VRM
                ## transformer unit for VRM
                x = self.SequenceModeling(x, src_mask=None)
                ## prediction layer for MLM and VSR
                text_pre, test_rem, text_mas = self.Prediction(
                    x, f_res, f_sub, train_mode=True)
                mask_c_show = trans_1d_2d(mask_c)
                return text_pre, test_rem, text_mas, mask_c_show
            else:
                raise NotImplementedError
        else:  # VRM is only used in the testing stage
            f_res = 0
            f_sub = 0
            contextual_feature = self.SequenceModeling(x, src_mask=None)
            text_pre = self.Prediction(
                contextual_feature,
                f_res,
                f_sub,
                train_mode=False,
                use_mlm=False)
            text_pre = paddle.transpose(
                text_pre, perm=[1, 0, 2])  # (26, b, 37))
A
andyjpaddle 已提交
433
            return text_pre, x
A
add vl  
andyjpaddle 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465


class VLHead(nn.Layer):
    """
    Architecture of VisionLAN
    """

    def __init__(self,
                 in_channels,
                 out_channels=36,
                 n_layers=3,
                 n_position=256,
                 n_dim=512,
                 max_text_length=25,
                 training_step='LA'):
        super(VLHead, self).__init__()
        self.MLM_VRM = MLM_VRM(
            n_layers=n_layers,
            n_position=n_position,
            n_dim=n_dim,
            max_text_length=max_text_length,
            nclass=out_channels + 1)
        self.training_step = training_step

    def forward(self, feat, targets=None):

        if self.training:
            label_pos = targets[-2]
            text_pre, test_rem, text_mas, mask_map = self.MLM_VRM(
                feat, label_pos, self.training_step, train_mode=True)
            return text_pre, test_rem, text_mas, mask_map
        else:
A
andyjpaddle 已提交
466
            text_pre, x = self.MLM_VRM(
A
add vl  
andyjpaddle 已提交
467
                feat, targets, self.training_step, train_mode=False)
A
andyjpaddle 已提交
468
            return text_pre, x