algorithm_kie_vi_layoutxlm.md 5.9 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
# 关键信息抽取算法-VI-LayoutXLM

- [1. 算法简介](#1-算法简介)
- [2. 环境配置](#2-环境配置)
- [3. 模型训练、评估、预测](#3-模型训练评估预测)
- [4. 推理部署](#4-推理部署)
  - [4.1 Python推理](#41-python推理)
  - [4.2 C++推理部署](#42-c推理部署)
  - [4.3 Serving服务化部署](#43-serving服务化部署)
  - [4.4 更多推理部署](#44-更多推理部署)
- [5. FAQ](#5-faq)
- [引用](#引用)


<a name="1"></a>

## 1. 算法简介

VI-LayoutXLM基于LayoutXLM进行改进,在下游任务训练过程中,去除视觉骨干网络模块,最终精度基本无损的情况下,模型推理速度进一步提升。

在XFUND_zh数据集上,算法复现效果如下:

|模型|骨干网络|任务|配置文件|hmean|下载链接|
| --- | --- |---| --- | --- | --- |
|VI-LayoutXLM |VI-LayoutXLM-base | SER |[ser_vi_layoutxlm_xfund_zh_udml.yml](../../configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh_udml.yml)|93.19%|[训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_pretrained.tar)/[推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_infer.tar)|
|VI-LayoutXLM |VI-LayoutXLM-base |RE | [re_vi_layoutxlm_xfund_zh_udml.yml](../../configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh_udml.yml)|83.92%|[训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_pretrained.tar)/[推理模型(coming soon)]()|

<a name="2"></a>

## 2. 环境配置
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。


<a name="3"></a>

## 3. 模型训练、评估、预测

请参考[关键信息抽取教程](./kie.md)。PaddleOCR对代码进行了模块化,训练不同的关键信息抽取模型只需要**更换配置文件**即可。


<a name="4"></a>
## 4. 推理部署

<a name="4-1"></a>

### 4.1 Python推理

**注:** 目前RE任务推理过程仍在适配中,下面以SER任务为例,介绍基于VI-LayoutXLM模型的关键信息抽取过程。

首先将训练得到的模型转换成inference model。以VI-LayoutXLM模型在XFUND_zh数据集上训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_pretrained.tar)),可以使用下面的命令进行转换。

``` bash
wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_pretrained.tar
tar -xf ser_vi_layoutxlm_xfund_pretrained.tar
python3 tools/export_model.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./ser_vi_layoutxlm_xfund_pretrained/best_accuracy Global.save_inference_dir=./inference/ser_vi_layoutxlm_infer
```

VI-LayoutXLM模型基于SER任务进行推理,可以执行如下命令:

```bash
cd ppstructure
62 63
python3 kie/predict_kie_token_ser.py \
  --kie_algorithm=LayoutXLM \
littletomatodonkey's avatar
littletomatodonkey 已提交
64
  --ser_model_dir=../inference/ser_vi_layoutxlm_infer \
65
  --image_dir=./docs/kie/input/zh_val_42.jpg \
littletomatodonkey's avatar
littletomatodonkey 已提交
66 67 68 69 70 71 72 73
  --ser_dict_path=../train_data/XFUND/class_list_xfun.txt \
  --vis_font_path=../doc/fonts/simfang.ttf \
  --ocr_order_method="tb-yx"
```

SER可视化结果默认保存到`./output`文件夹里面,结果示例如下:

<div align="center">
74
    <img src="../../ppstructure/docs/kie/result_ser/zh_val_42_ser.jpg" width="800">
littletomatodonkey's avatar
littletomatodonkey 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
</div>


<a name="4-2"></a>
### 4.2 C++推理部署

暂不支持

<a name="4-3"></a>
### 4.3 Serving服务化部署

暂不支持

<a name="4-4"></a>
### 4.4 更多推理部署

暂不支持

<a name="5"></a>

## 5. FAQ

## 引用


```bibtex
@article{DBLP:journals/corr/abs-2104-08836,
  author    = {Yiheng Xu and
               Tengchao Lv and
               Lei Cui and
               Guoxin Wang and
               Yijuan Lu and
               Dinei Flor{\^{e}}ncio and
               Cha Zhang and
               Furu Wei},
  title     = {LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich
               Document Understanding},
  journal   = {CoRR},
  volume    = {abs/2104.08836},
  year      = {2021},
  url       = {https://arxiv.org/abs/2104.08836},
  eprinttype = {arXiv},
  eprint    = {2104.08836},
  timestamp = {Thu, 14 Oct 2021 09:17:23 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2104-08836.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

@article{DBLP:journals/corr/abs-1912-13318,
  author    = {Yiheng Xu and
               Minghao Li and
               Lei Cui and
               Shaohan Huang and
               Furu Wei and
               Ming Zhou},
  title     = {LayoutLM: Pre-training of Text and Layout for Document Image Understanding},
  journal   = {CoRR},
  volume    = {abs/1912.13318},
  year      = {2019},
  url       = {http://arxiv.org/abs/1912.13318},
  eprinttype = {arXiv},
  eprint    = {1912.13318},
  timestamp = {Mon, 01 Jun 2020 16:20:46 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1912-13318.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

@article{DBLP:journals/corr/abs-2012-14740,
  author    = {Yang Xu and
               Yiheng Xu and
               Tengchao Lv and
               Lei Cui and
               Furu Wei and
               Guoxin Wang and
               Yijuan Lu and
               Dinei A. F. Flor{\^{e}}ncio and
               Cha Zhang and
               Wanxiang Che and
               Min Zhang and
               Lidong Zhou},
  title     = {LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding},
  journal   = {CoRR},
  volume    = {abs/2012.14740},
  year      = {2020},
  url       = {https://arxiv.org/abs/2012.14740},
  eprinttype = {arXiv},
  eprint    = {2012.14740},
  timestamp = {Tue, 27 Jul 2021 09:53:52 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2012-14740.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```