readme_en.md 10.8 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- [Server-side C++ Inference](#server-side-c-inference)
  - [1. Prepare the Environment](#1-prepare-the-environment)
    - [Environment](#environment)
    - [1.1 Compile OpenCV](#11-compile-opencv)
    - [1.2 Compile or Download or the Paddle Inference Library](#12-compile-or-download-or-the-paddle-inference-library)
      - [1.2.1 Direct download and installation](#121-direct-download-and-installation)
      - [1.2.2 Compile the inference source code](#122-compile-the-inference-source-code)
  - [2. Compile and Run the Demo](#2-compile-and-run-the-demo)
    - [2.1 Export the inference model](#21-export-the-inference-model)
    - [2.2 Compile PaddleOCR C++ inference demo](#22-compile-paddleocr-c-inference-demo)
    - [Run the demo](#run-the-demo)
        - [1. run det demo:](#1-run-det-demo)
        - [2. run rec demo:](#2-run-rec-demo)
        - [3. run system demo:](#3-run-system-demo)
  - [3. FAQ](#3-faq)

17
# Server-side C++ Inference
littletomatodonkey's avatar
littletomatodonkey 已提交
18

fanruinet's avatar
fanruinet 已提交
19 20 21
This chapter introduces the C++ deployment steps of the PaddleOCR model. The corresponding Python predictive deployment method refers to [document](../../doc/doc_ch/inference.md).
C++ is better than python in terms of performance. Therefore, in CPU and GPU deployment scenarios, C++ deployment is mostly used.
This section will introduce how to configure the C++ environment and deploy PaddleOCR in Linux (CPU\GPU) environment. For Windows deployment please refer to [Windows](./docs/windows_vs2019_build.md) compilation guidelines.
littletomatodonkey's avatar
littletomatodonkey 已提交
22 23


24
## 1. Prepare the Environment
littletomatodonkey's avatar
littletomatodonkey 已提交
25 26 27 28 29 30

### Environment

- Linux, docker is recommended.


31
### 1.1 Compile OpenCV
littletomatodonkey's avatar
littletomatodonkey 已提交
32

fanruinet's avatar
fanruinet 已提交
33
* First of all, you need to download the source code compiled package in the Linux environment from the OpenCV official website. Taking OpenCV 3.4.7 as an example, the download command is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
34

littletomatodonkey's avatar
littletomatodonkey 已提交
35
```bash
W
WenmuZhou 已提交
36
cd deploy/cpp_infer
littletomatodonkey's avatar
littletomatodonkey 已提交
37 38
wget https://paddleocr.bj.bcebos.com/libs/opencv/opencv-3.4.7.tar.gz
tar -xf opencv-3.4.7.tar.gz
littletomatodonkey's avatar
littletomatodonkey 已提交
39 40
```

fanruinet's avatar
fanruinet 已提交
41
Finally, you will see the folder of `opencv-3.4.7/` in the current directory.
littletomatodonkey's avatar
littletomatodonkey 已提交
42

fanruinet's avatar
fanruinet 已提交
43
* Compile OpenCV, the OpenCV source path (`root_path`) and installation path (`install_path`) should be set by yourself. Enter the OpenCV source code path and compile it in the following way.
littletomatodonkey's avatar
littletomatodonkey 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75


```shell
root_path=your_opencv_root_path
install_path=${root_path}/opencv3

rm -rf build
mkdir build
cd build

cmake .. \
    -DCMAKE_INSTALL_PREFIX=${install_path} \
    -DCMAKE_BUILD_TYPE=Release \
    -DBUILD_SHARED_LIBS=OFF \
    -DWITH_IPP=OFF \
    -DBUILD_IPP_IW=OFF \
    -DWITH_LAPACK=OFF \
    -DWITH_EIGEN=OFF \
    -DCMAKE_INSTALL_LIBDIR=lib64 \
    -DWITH_ZLIB=ON \
    -DBUILD_ZLIB=ON \
    -DWITH_JPEG=ON \
    -DBUILD_JPEG=ON \
    -DWITH_PNG=ON \
    -DBUILD_PNG=ON \
    -DWITH_TIFF=ON \
    -DBUILD_TIFF=ON

make -j
make install
```

fanruinet's avatar
fanruinet 已提交
76
In the above commands, `root_path` is the downloaded OpenCV source code path, and `install_path` is the installation path of OpenCV. After `make install` is completed, the OpenCV header file and library file will be generated in this folder for later OCR source code compilation.
littletomatodonkey's avatar
littletomatodonkey 已提交
77 78 79



fanruinet's avatar
fanruinet 已提交
80
The final file structure under the OpenCV installation path is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
81 82 83 84 85 86 87 88 89 90

```
opencv3/
|-- bin
|-- include
|-- lib
|-- lib64
|-- share
```

91
### 1.2 Compile or Download or the Paddle Inference Library
littletomatodonkey's avatar
littletomatodonkey 已提交
92 93 94

* There are 2 ways to obtain the Paddle inference library, described in detail below.

littletomatodonkey's avatar
littletomatodonkey 已提交
95
#### 1.2.1 Direct download and installation
littletomatodonkey's avatar
littletomatodonkey 已提交
96

文幕地方's avatar
文幕地方 已提交
97
[Paddle inference library official website](https://paddleinference.paddlepaddle.org.cn/user_guides/download_lib.html#linux). You can review and select the appropriate version of the inference library on the official website.
littletomatodonkey's avatar
littletomatodonkey 已提交
98 99


fanruinet's avatar
fanruinet 已提交
100
* After downloading, use the following command to extract files.
littletomatodonkey's avatar
littletomatodonkey 已提交
101 102 103 104 105

```
tar -xf paddle_inference.tgz
```

fanruinet's avatar
fanruinet 已提交
106
Finally you will see the the folder of `paddle_inference/` in the current path.
littletomatodonkey's avatar
littletomatodonkey 已提交
107

fanruinet's avatar
fanruinet 已提交
108 109 110
#### 1.2.2 Compile the inference source code
* If you want to get the latest Paddle inference library features, you can download the latest code from Paddle GitHub repository and compile the inference library from the source code. It is recommended to download the inference library with paddle version greater than or equal to 2.0.1.
* You can refer to [Paddle inference library] (https://www.paddlepaddle.org.cn/documentation/docs/en/advanced_guide/inference_deployment/inference/build_and_install_lib_en.html) to get the Paddle source code from GitHub, and then compile To generate the latest inference library. The method of using git to access the code is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
111 112 113 114


```shell
git clone https://github.com/PaddlePaddle/Paddle.git
L
LDOUBLEV 已提交
115
git checkout develop
littletomatodonkey's avatar
littletomatodonkey 已提交
116 117
```

fanruinet's avatar
fanruinet 已提交
118
* Enter the Paddle directory and run the following commands to compile the paddle inference library.
littletomatodonkey's avatar
littletomatodonkey 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

```shell
rm -rf build
mkdir build
cd build

cmake  .. \
    -DWITH_CONTRIB=OFF \
    -DWITH_MKL=ON \
    -DWITH_MKLDNN=ON  \
    -DWITH_TESTING=OFF \
    -DCMAKE_BUILD_TYPE=Release \
    -DWITH_INFERENCE_API_TEST=OFF \
    -DON_INFER=ON \
    -DWITH_PYTHON=ON
make -j
make inference_lib_dist
```

L
LDOUBLEV 已提交
138
For more compilation parameter options, please refer to the [document](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#congyuanmabianyi).
littletomatodonkey's avatar
littletomatodonkey 已提交
139 140


L
LDOUBLEV 已提交
141
* After the compilation process, you can see the following files in the folder of `build/paddle_inference_install_dir/`.
littletomatodonkey's avatar
littletomatodonkey 已提交
142 143

```
L
LDOUBLEV 已提交
144
build/paddle_inference_install_dir/
littletomatodonkey's avatar
littletomatodonkey 已提交
145 146 147 148 149 150
|-- CMakeCache.txt
|-- paddle
|-- third_party
|-- version.txt
```

fanruinet's avatar
fanruinet 已提交
151
`paddle` is the Paddle library required for C++ prediction later, and `version.txt` contains the version information of the current inference library.
littletomatodonkey's avatar
littletomatodonkey 已提交
152 153


154
## 2. Compile and Run the Demo
littletomatodonkey's avatar
littletomatodonkey 已提交
155 156 157

### 2.1 Export the inference model

fanruinet's avatar
fanruinet 已提交
158
* You can refer to [Model inference](../../doc/doc_ch/inference.md) and export the inference model. After the model is exported, assuming it is placed in the `inference` directory, the directory structure is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
159 160 161 162

```
inference/
|-- det_db
M
MissPenguin 已提交
163 164
|   |--inference.pdiparams
|   |--inference.pdmodel
littletomatodonkey's avatar
littletomatodonkey 已提交
165
|-- rec_rcnn
M
MissPenguin 已提交
166 167
|   |--inference.pdiparams
|   |--inference.pdmodel
littletomatodonkey's avatar
littletomatodonkey 已提交
168 169 170 171 172 173 174 175 176
```


### 2.2 Compile PaddleOCR C++ inference demo


* The compilation commands are as follows. The addresses of Paddle C++ inference library, opencv and other Dependencies need to be replaced with the actual addresses on your own machines.

```shell
M
MissPenguin 已提交
177
sh tools/build.sh
littletomatodonkey's avatar
littletomatodonkey 已提交
178 179
```

M
MissPenguin 已提交
180
Specifically, you should modify the paths in `tools/build.sh`. The related content is as follows.
littletomatodonkey's avatar
littletomatodonkey 已提交
181 182 183 184 185 186 187 188

```shell
OPENCV_DIR=your_opencv_dir
LIB_DIR=your_paddle_inference_dir
CUDA_LIB_DIR=your_cuda_lib_dir
CUDNN_LIB_DIR=your_cudnn_lib_dir
```

fanruinet's avatar
fanruinet 已提交
189
`OPENCV_DIR` is the OpenCV installation path; `LIB_DIR` is the download (`paddle_inference` folder)
L
LDOUBLEV 已提交
190
or the generated Paddle inference library path (`build/paddle_inference_install_dir` folder);
fanruinet's avatar
fanruinet 已提交
191
`CUDA_LIB_DIR` is the CUDA library file path, in docker; it is `/usr/local/cuda/lib64`; `CUDNN_LIB_DIR` is the cuDNN library file path, in docker it is `/usr/lib/x86_64-linux-gnu/`.
littletomatodonkey's avatar
littletomatodonkey 已提交
192 193


M
MissPenguin 已提交
194
* After the compilation is completed, an executable file named `ppocr` will be generated in the `build` folder.
littletomatodonkey's avatar
littletomatodonkey 已提交
195 196 197


### Run the demo
fanruinet's avatar
fanruinet 已提交
198
Execute the built executable file:
M
MissPenguin 已提交
199 200
```shell
./build/ppocr <mode> [--param1] [--param2] [...]
201
```
fanruinet's avatar
fanruinet 已提交
202 203 204 205 206 207 208 209 210
`mode` is a required parameter,and the valid values are

mode value | Model used
-----|------
det  | Detection only
rec  | Recognition only
system | End-to-end system

Specifically,
M
MissPenguin 已提交
211 212

##### 1. run det demo:
littletomatodonkey's avatar
littletomatodonkey 已提交
213
```shell
M
MissPenguin 已提交
214
./build/ppocr det \
M
MissPenguin 已提交
215
    --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
M
MissPenguin 已提交
216
    --image_dir=../../doc/imgs/12.jpg
littletomatodonkey's avatar
littletomatodonkey 已提交
217
```
M
MissPenguin 已提交
218
##### 2. run rec demo:
M
MissPenguin 已提交
219
```shell
M
MissPenguin 已提交
220
./build/ppocr rec \
M
MissPenguin 已提交
221
    --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
M
MissPenguin 已提交
222
    --image_dir=../../doc/imgs_words/ch/
Z
zhoujun 已提交
223
```
M
MissPenguin 已提交
224
##### 3. run system demo:
M
MissPenguin 已提交
225 226
```shell
# without text direction classifier
M
MissPenguin 已提交
227
./build/ppocr system \
M
MissPenguin 已提交
228 229
    --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
    --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
M
MissPenguin 已提交
230 231
    --image_dir=../../doc/imgs/12.jpg
# with text direction classifier
M
MissPenguin 已提交
232
./build/ppocr system \
M
MissPenguin 已提交
233 234 235 236
    --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
    --use_angle_cls=true \
    --cls_model_dir=inference/ch_ppocr_mobile_v2.0_cls_infer \
    --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
M
MissPenguin 已提交
237 238 239
    --image_dir=../../doc/imgs/12.jpg
```

fanruinet's avatar
fanruinet 已提交
240
More parameters are as follows,
M
MissPenguin 已提交
241

fanruinet's avatar
fanruinet 已提交
242
- Common parameters
M
MissPenguin 已提交
243

M
MissPenguin 已提交
244 245 246 247 248 249
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|use_gpu|bool|false|Whether to use GPU|
|gpu_id|int|0|GPU id when use_gpu is true|
|gpu_mem|int|4000|GPU memory requested|
|cpu_math_library_num_threads|int|10|Number of threads when using CPU inference. When machine cores is enough, the large the value, the faster the inference speed|
文幕地方's avatar
文幕地方 已提交
250
|enable_mkldnn|bool|true|Whether to use mkdlnn library|
M
MissPenguin 已提交
251

fanruinet's avatar
fanruinet 已提交
252
- Detection related parameters
M
MissPenguin 已提交
253 254 255

|parameter|data type|default|meaning|
| --- | --- | --- | --- |
M
MissPenguin 已提交
256 257 258 259 260 261 262
|det_model_dir|string|-|Address of detection inference model|
|max_side_len|int|960|Limit the maximum image height and width to 960|
|det_db_thresh|float|0.3|Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result|
|det_db_box_thresh|float|0.5|DB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate|
|det_db_unclip_ratio|float|1.6|Indicates the compactness of the text box, the smaller the value, the closer the text box to the text|
|use_polygon_score|bool|false|Whether to use polygon box to calculate bbox score, false means to use rectangle box to calculate. Use rectangular box to calculate faster, and polygonal box more accurate for curved text area.|
|visualize|bool|true|Whether to visualize the results,when it is set as true, The prediction result will be save in the image file `./ocr_vis.png`.|
M
MissPenguin 已提交
263

fanruinet's avatar
fanruinet 已提交
264
- Classifier related parameters
M
MissPenguin 已提交
265 266 267

|parameter|data type|default|meaning|
| --- | --- | --- | --- |
M
MissPenguin 已提交
268 269 270
|use_angle_cls|bool|false|Whether to use the direction classifier|
|cls_model_dir|string|-|Address of direction classifier inference model|
|cls_thresh|float|0.9|Score threshold of the  direction classifier|
M
MissPenguin 已提交
271

fanruinet's avatar
fanruinet 已提交
272
- Recognition related parameters
M
MissPenguin 已提交
273 274 275

|parameter|data type|default|meaning|
| --- | --- | --- | --- |
M
MissPenguin 已提交
276
|rec_model_dir|string|-|Address of recognition inference model|
文幕地方's avatar
文幕地方 已提交
277
|rec_char_dict_path|string|../../ppocr/utils/ppocr_keys_v1.txt|dictionary file|
M
MissPenguin 已提交
278

文幕地方's avatar
文幕地方 已提交
279
* Multi-language inference is also supported in PaddleOCR, you can refer to [recognition tutorial](../../doc/doc_en/recognition_en.md) for more supported languages and models in PaddleOCR. Specifically, if you want to infer using multi-language models, you just need to modify values of `rec_char_dict_path` and `rec_model_dir`.
Z
zhoujun 已提交
280 281


littletomatodonkey's avatar
littletomatodonkey 已提交
282 283 284
The detection results will be shown on the screen, which is as follows.

<div align="center">
littletomatodonkey's avatar
littletomatodonkey 已提交
285
    <img src="./imgs/cpp_infer_pred_12.png" width="600">
littletomatodonkey's avatar
littletomatodonkey 已提交
286 287 288
</div>


文幕地方's avatar
文幕地方 已提交
289
## 3. FAQ
littletomatodonkey's avatar
littletomatodonkey 已提交
290

文幕地方's avatar
文幕地方 已提交
291
 1.  Encountered the error `unable to access 'https://github.com/LDOUBLEV/AutoLog.git/': gnutls_handshake() failed: The TLS connection was non-properly terminated.` First import `https://github. com/LDOUBLEV/AutoLog` project on gitee, and then change the github address in `deploy/cpp_infer/external-cmake/auto-log.cmake` to the gitee address.