paddleocr.py 8.0 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys

__dir__ = os.path.dirname(__file__)
sys.path.append(os.path.join(__dir__, ''))

import cv2
import numpy as np
from pathlib import Path
import tarfile
import requests
from tqdm import tqdm

from tools.infer import predict_system
from ppocr.utils.utility import initial_logger

logger = initial_logger()
32
from ppocr.utils.utility import check_and_read_gif, get_image_file_list
W
WenmuZhou 已提交
33 34 35 36

__all__ = ['PaddleOCR']

model_params = {
37 38 39
    'det': 'https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar',
    'rec':
    'https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar',
W
WenmuZhou 已提交
40 41 42
}

SUPPORT_DET_MODEL = ['DB']
43 44
SUPPORT_REC_MODEL = ['CRNN']
BASE_DIR = os.path.expanduser("~/.paddleocr/")
W
WenmuZhou 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61


def download_with_progressbar(url, save_path):
    response = requests.get(url, stream=True)
    total_size_in_bytes = int(response.headers.get('content-length', 0))
    block_size = 1024  # 1 Kibibyte
    progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
    with open(save_path, 'wb') as file:
        for data in response.iter_content(block_size):
            progress_bar.update(len(data))
            file.write(data)
    progress_bar.close()
    if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
        logger.error("ERROR, something went wrong")
        sys.exit(0)


62
def maybe_download(model_storage_directory, url):
W
WenmuZhou 已提交
63
    # using custom model
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    if not os.path.exists(os.path.join(
            model_storage_directory, 'model')) or not os.path.exists(
                os.path.join(model_storage_directory, 'params')):
        tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
        print('download {} to {}'.format(url, tmp_path))
        os.makedirs(model_storage_directory, exist_ok=True)
        download_with_progressbar(url, tmp_path)
        with tarfile.open(tmp_path, 'r') as tarObj:
            for member in tarObj.getmembers():
                if "model" in member.name:
                    filename = 'model'
                elif "params" in member.name:
                    filename = 'params'
                else:
                    continue
                file = tarObj.extractfile(member)
                with open(
                        os.path.join(model_storage_directory, filename),
                        'wb') as f:
                    f.write(file.read())
        os.remove(tmp_path)
W
WenmuZhou 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102


def parse_args():
    import argparse

    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    # params for prediction engine
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=8000)

    # params for text detector
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
103
    parser.add_argument("--det_model_dir", type=str, default=None)
W
WenmuZhou 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117
    parser.add_argument("--det_max_side_len", type=float, default=960)

    # DB parmas
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)

    # EAST parmas
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

    # params for text recognizer
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
118
    parser.add_argument("--rec_model_dir", type=str, default=None)
W
WenmuZhou 已提交
119 120 121
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
    parser.add_argument("--rec_batch_num", type=int, default=30)
122
    parser.add_argument("--max_text_length", type=int, default=25)
W
WenmuZhou 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
    parser.add_argument("--use_space_char", type=bool, default=True)
    parser.add_argument("--enable_mkldnn", type=bool, default=False)

    parser.add_argument("--det", type=str2bool, default=True)
    parser.add_argument("--rec", type=str2bool, default=True)
    return parser.parse_args()


class PaddleOCR(predict_system.TextSystem):
136
    def __init__(self, **kwargs):
W
WenmuZhou 已提交
137 138 139 140 141 142
        """
        paddleocr package
        args:
            **kwargs: other params show in paddleocr --help
        """
        postprocess_params = parse_args()
143
        postprocess_params.__dict__.update(**kwargs)
W
WenmuZhou 已提交
144

145 146 147 148 149 150
        # init model dir
        if postprocess_params.det_model_dir is None:
            postprocess_params.det_model_dir = os.path.join(BASE_DIR, 'det')
        if postprocess_params.rec_model_dir is None:
            postprocess_params.rec_model_dir = os.path.join(BASE_DIR, 'rec')
        print(postprocess_params)
W
WenmuZhou 已提交
151
        # download model
152 153
        maybe_download(postprocess_params.det_model_dir, model_params['det'])
        maybe_download(postprocess_params.rec_model_dir, model_params['rec'])
W
WenmuZhou 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

        if postprocess_params.det_algorithm not in SUPPORT_DET_MODEL:
            logger.error('det_algorithm must in {}'.format(SUPPORT_DET_MODEL))
            sys.exit(0)
        if postprocess_params.rec_algorithm not in SUPPORT_REC_MODEL:
            logger.error('rec_algorithm must in {}'.format(SUPPORT_REC_MODEL))
            sys.exit(0)

        postprocess_params.rec_char_dict_path = Path(
            __file__).parent / postprocess_params.rec_char_dict_path

        # init det_model and rec_model
        super().__init__(postprocess_params)

    def ocr(self, img, det=True, rec=True):
        """
        ocr with paddleocr
        args:
            img: img for ocr, support ndarray, img_path and list or ndarray
            det: use text detection or not, if false, only rec will be exec. default is True
            rec: use text recognition or not, if false, only det will be exec. default is True
        """
        assert isinstance(img, (np.ndarray, list, str))
        if isinstance(img, str):
            image_file = img
            img, flag = check_and_read_gif(image_file)
            if not flag:
                img = cv2.imread(image_file)
            if img is None:
                logger.error("error in loading image:{}".format(image_file))
                return None
        if det and rec:
            dt_boxes, rec_res = self.__call__(img)
            return [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
        elif det and not rec:
            dt_boxes, elapse = self.text_detector(img)
            if dt_boxes is None:
                return None
            return [box.tolist() for box in dt_boxes]
        else:
            if not isinstance(img, list):
                img = [img]
            rec_res, elapse = self.text_recognizer(img)
            return rec_res
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212


def main():
    # for com
    args = parse_args()
    image_file_list = get_image_file_list(args.image_dir)
    if len(image_file_list) == 0:
        logger.error('no images find in {}'.format(args.image_dir))
        return
    ocr_engine = PaddleOCR()
    for img_path in image_file_list:
        print(img_path)
        result = ocr_engine.ocr(img_path, det=args.det, rec=args.rec)
        for line in result:
            print(line)