label_ops.py 43.9 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

20
import copy
W
WenmuZhou 已提交
21
import numpy as np
T
tink2123 已提交
22
import string
L
add kie  
LDOUBLEV 已提交
23
from shapely.geometry import LineString, Point, Polygon
L
LDOUBLEV 已提交
24
import json
A
andyjpaddle 已提交
25
import copy
A
add vl  
andyjpaddle 已提交
26
from random import sample
W
WenmuZhou 已提交
27

T
tink2123 已提交
28 29
from ppocr.utils.logging import get_logger

W
WenmuZhou 已提交
30 31 32 33 34 35 36 37 38 39 40 41

class ClsLabelEncode(object):
    def __init__(self, label_list, **kwargs):
        self.label_list = label_list

    def __call__(self, data):
        label = data['label']
        if label not in self.label_list:
            return None
        label = self.label_list.index(label)
        data['label'] = label
        return data
W
WenmuZhou 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61


class DetLabelEncode(object):
    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
L
LDOUBLEV 已提交
62 63
        if len(boxes) == 0:
            return None
M
MissPenguin 已提交
64
        boxes = self.expand_points_num(boxes)
W
WenmuZhou 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
        data['ignore_tags'] = txt_tags
        return data

    def order_points_clockwise(self, pts):
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
L
fix  
LDOUBLEV 已提交
78 79 80 81
        tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
        diff = np.diff(np.array(tmp), axis=1)
        rect[1] = tmp[np.argmin(diff)]
        rect[3] = tmp[np.argmax(diff)]
W
WenmuZhou 已提交
82 83
        return rect

M
MissPenguin 已提交
84 85 86 87 88 89 90 91 92 93 94
    def expand_points_num(self, boxes):
        max_points_num = 0
        for box in boxes:
            if len(box) > max_points_num:
                max_points_num = len(box)
        ex_boxes = []
        for box in boxes:
            ex_box = box + [box[-1]] * (max_points_num - len(box))
            ex_boxes.append(ex_box)
        return ex_boxes

W
WenmuZhou 已提交
95 96 97 98 99 100 101 102 103 104

class BaseRecLabelEncode(object):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False):

        self.max_text_len = max_text_length
T
tink2123 已提交
105 106
        self.beg_str = "sos"
        self.end_str = "eos"
T
tink2123 已提交
107
        self.lower = False
T
tink2123 已提交
108 109 110 111 112 113

        if character_dict_path is None:
            logger = get_logger()
            logger.warning(
                "The character_dict_path is None, model can only recognize number and lower letters"
            )
W
WenmuZhou 已提交
114 115
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
T
tink2123 已提交
116 117
            self.lower = True
        else:
118
            self.character_str = []
W
WenmuZhou 已提交
119 120 121 122
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
123
                    self.character_str.append(line)
W
WenmuZhou 已提交
124
            if use_space_char:
125
                self.character_str.append(" ")
W
WenmuZhou 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
            dict_character = list(self.character_str)
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

    def encode(self, text):
        """convert text-label into text-index.
        input:
            text: text labels of each image. [batch_size]

        output:
            text: concatenated text index for CTCLoss.
                    [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
            length: length of each text. [batch_size]
        """
W
WenmuZhou 已提交
146
        if len(text) == 0 or len(text) > self.max_text_len:
W
WenmuZhou 已提交
147
            return None
T
tink2123 已提交
148
        if self.lower:
W
WenmuZhou 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                # logger = get_logger()
                # logger.warning('{} is not in dict'.format(char))
                continue
            text_list.append(self.dict[char])
        if len(text_list) == 0:
            return None
        return text_list


class CTCLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
170 171
        super(CTCLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
W
WenmuZhou 已提交
172 173 174 175 176 177 178 179 180

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        data['length'] = np.array(len(text))
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
181 182 183 184 185

        label = [0] * len(self.character)
        for x in text:
            label[x] += 1
        data['label_ace'] = np.array(label)
W
WenmuZhou 已提交
186 187 188 189 190 191 192
        return data

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


J
Jethong 已提交
193
class E2ELabelEncodeTest(BaseRecLabelEncode):
J
Jethong 已提交
194 195 196 197 198
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
199 200
        super(E2ELabelEncodeTest, self).__init__(
            max_text_length, character_dict_path, use_space_char)
J
Jethong 已提交
201 202

    def __call__(self, data):
J
Jethong 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        import json
        padnum = len(self.dict)
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)
        data['polys'] = boxes
J
Jethong 已提交
221
        data['ignore_tags'] = txt_tags
J
Jethong 已提交
222
        temp_texts = []
J
Jethong 已提交
223
        for text in txts:
J
Jethong 已提交
224
            text = text.lower()
J
Jethong 已提交
225 226 227
            text = self.encode(text)
            if text is None:
                return None
J
Jethong 已提交
228 229
            text = text + [padnum] * (self.max_text_len - len(text)
                                      )  # use 36 to pad
J
Jethong 已提交
230 231 232 233 234
            temp_texts.append(text)
        data['texts'] = np.array(temp_texts)
        return data


J
Jethong 已提交
235
class E2ELabelEncodeTrain(object):
J
Jethong 已提交
236 237
    def __init__(self, **kwargs):
        pass
J
Jethong 已提交
238 239

    def __call__(self, data):
J
Jethong 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        import json
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
J
Jethong 已提交
259
        data['ignore_tags'] = txt_tags
J
Jethong 已提交
260 261 262
        return data


L
add kie  
LDOUBLEV 已提交
263
class KieLabelEncode(object):
264 265 266 267 268 269
    def __init__(self,
                 character_dict_path,
                 class_path,
                 norm=10,
                 directed=False,
                 **kwargs):
L
add kie  
LDOUBLEV 已提交
270 271
        super(KieLabelEncode, self).__init__()
        self.dict = dict({'': 0})
272
        self.label2classid_map = dict()
L
fix win  
LDOUBLEV 已提交
273
        with open(character_dict_path, 'r', encoding='utf-8') as fr:
L
add kie  
LDOUBLEV 已提交
274 275 276 277 278
            idx = 1
            for line in fr:
                char = line.strip()
                self.dict[char] = idx
                idx += 1
279 280 281 282 283
        with open(class_path, "r") as fin:
            lines = fin.readlines()
            for idx, line in enumerate(lines):
                line = line.strip("\n")
                self.label2classid_map[line] = idx
L
add kie  
LDOUBLEV 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        self.norm = norm
        self.directed = directed

    def compute_relation(self, boxes):
        """Compute relation between every two boxes."""
        x1s, y1s = boxes[:, 0:1], boxes[:, 1:2]
        x2s, y2s = boxes[:, 4:5], boxes[:, 5:6]
        ws, hs = x2s - x1s + 1, np.maximum(y2s - y1s + 1, 1)
        dxs = (x1s[:, 0][None] - x1s) / self.norm
        dys = (y1s[:, 0][None] - y1s) / self.norm
        xhhs, xwhs = hs[:, 0][None] / hs, ws[:, 0][None] / hs
        whs = ws / hs + np.zeros_like(xhhs)
        relations = np.stack([dxs, dys, whs, xhhs, xwhs], -1)
        bboxes = np.concatenate([x1s, y1s, x2s, y2s], -1).astype(np.float32)
        return relations, bboxes

    def pad_text_indices(self, text_inds):
        """Pad text index to same length."""
L
debug  
LDOUBLEV 已提交
302
        max_len = 300
L
add kie  
LDOUBLEV 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        recoder_len = max([len(text_ind) for text_ind in text_inds])
        padded_text_inds = -np.ones((len(text_inds), max_len), np.int32)
        for idx, text_ind in enumerate(text_inds):
            padded_text_inds[idx, :len(text_ind)] = np.array(text_ind)
        return padded_text_inds, recoder_len

    def list_to_numpy(self, ann_infos):
        """Convert bboxes, relations, texts and labels to ndarray."""
        boxes, text_inds = ann_infos['points'], ann_infos['text_inds']
        boxes = np.array(boxes, np.int32)
        relations, bboxes = self.compute_relation(boxes)

        labels = ann_infos.get('labels', None)
        if labels is not None:
            labels = np.array(labels, np.int32)
            edges = ann_infos.get('edges', None)
            if edges is not None:
                labels = labels[:, None]
                edges = np.array(edges)
                edges = (edges[:, None] == edges[None, :]).astype(np.int32)
                if self.directed:
                    edges = (edges & labels == 1).astype(np.int32)
                np.fill_diagonal(edges, -1)
                labels = np.concatenate([labels, edges], -1)
        padded_text_inds, recoder_len = self.pad_text_indices(text_inds)
L
debug  
LDOUBLEV 已提交
328
        max_num = 300
L
add kie  
LDOUBLEV 已提交
329 330
        temp_bboxes = np.zeros([max_num, 4])
        h, _ = bboxes.shape
那珈落's avatar
那珈落 已提交
331
        temp_bboxes[:h, :] = bboxes
L
add kie  
LDOUBLEV 已提交
332 333 334 335

        temp_relations = np.zeros([max_num, max_num, 5])
        temp_relations[:h, :h, :] = relations

L
debug  
LDOUBLEV 已提交
336
        temp_padded_text_inds = np.zeros([max_num, max_num])
L
add kie  
LDOUBLEV 已提交
337 338
        temp_padded_text_inds[:h, :] = padded_text_inds

L
debug  
LDOUBLEV 已提交
339
        temp_labels = np.zeros([max_num, max_num])
L
add kie  
LDOUBLEV 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
        temp_labels[:h, :h + 1] = labels

        tag = np.array([h, recoder_len])
        return dict(
            image=ann_infos['image'],
            points=temp_bboxes,
            relations=temp_relations,
            texts=temp_padded_text_inds,
            labels=temp_labels,
            tag=tag)

    def convert_canonical(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        points = [Point(points_x[i], points_y[i]) for i in range(4)]

        polygon = Polygon([(p.x, p.y) for p in points])
        min_x, min_y, _, _ = polygon.bounds
        points_to_lefttop = [
            LineString([points[i], Point(min_x, min_y)]) for i in range(4)
        ]
        distances = np.array([line.length for line in points_to_lefttop])
        sort_dist_idx = np.argsort(distances)
        lefttop_idx = sort_dist_idx[0]

        if lefttop_idx == 0:
            point_orders = [0, 1, 2, 3]
        elif lefttop_idx == 1:
            point_orders = [1, 2, 3, 0]
        elif lefttop_idx == 2:
            point_orders = [2, 3, 0, 1]
        else:
            point_orders = [3, 0, 1, 2]

        sorted_points_x = [points_x[i] for i in point_orders]
        sorted_points_y = [points_y[j] for j in point_orders]

        return sorted_points_x, sorted_points_y

    def sort_vertex(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        x = np.array(points_x)
        y = np.array(points_y)
        center_x = np.sum(x) * 0.25
        center_y = np.sum(y) * 0.25

        x_arr = np.array(x - center_x)
        y_arr = np.array(y - center_y)

        angle = np.arctan2(y_arr, x_arr) * 180.0 / np.pi
        sort_idx = np.argsort(angle)

        sorted_points_x, sorted_points_y = [], []
        for i in range(4):
            sorted_points_x.append(points_x[sort_idx[i]])
            sorted_points_y.append(points_y[sort_idx[i]])

        return self.convert_canonical(sorted_points_x, sorted_points_y)

    def __call__(self, data):
        import json
        label = data['label']
        annotations = json.loads(label)
        boxes, texts, text_inds, labels, edges = [], [], [], [], []
        for ann in annotations:
            box = ann['points']
            x_list = [box[i][0] for i in range(4)]
            y_list = [box[i][1] for i in range(4)]
            sorted_x_list, sorted_y_list = self.sort_vertex(x_list, y_list)
            sorted_box = []
            for x, y in zip(sorted_x_list, sorted_y_list):
                sorted_box.append(x)
                sorted_box.append(y)
            boxes.append(sorted_box)
            text = ann['transcription']
            texts.append(ann['transcription'])
            text_ind = [self.dict[c] for c in text if c in self.dict]
            text_inds.append(text_ind)
L
fix  
LDOUBLEV 已提交
423
            if 'label' in ann.keys():
424
                labels.append(self.label2classid_map[ann['label']])
L
fix  
LDOUBLEV 已提交
425 426
            elif 'key_cls' in ann.keys():
                labels.append(ann['key_cls'])
L
fix  
LDOUBLEV 已提交
427
            else:
A
add vl  
andyjpaddle 已提交
428 429 430
                raise ValueError(
                    "Cannot found 'key_cls' in ann.keys(), please check your training annotation."
                )
L
add kie  
LDOUBLEV 已提交
431 432 433 434 435 436 437 438 439 440 441 442
            edges.append(ann.get('edge', 0))
        ann_infos = dict(
            image=data['image'],
            points=boxes,
            texts=texts,
            text_inds=text_inds,
            edges=edges,
            labels=labels)

        return self.list_to_numpy(ann_infos)


W
WenmuZhou 已提交
443 444 445 446 447 448 449 450
class AttnLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
451 452
        super(AttnLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
W
WenmuZhou 已提交
453 454

    def add_special_char(self, dict_character):
L
LDOUBLEV 已提交
455 456 457
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = [self.beg_str] + dict_character + [self.end_str]
W
WenmuZhou 已提交
458 459
        return dict_character

L
LDOUBLEV 已提交
460 461
    def __call__(self, data):
        text = data['label']
W
WenmuZhou 已提交
462
        text = self.encode(text)
L
LDOUBLEV 已提交
463 464
        if text is None:
            return None
L
LDOUBLEV 已提交
465
        if len(text) >= self.max_text_len:
L
LDOUBLEV 已提交
466 467 468
            return None
        data['length'] = np.array(len(text))
        text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
T
tink2123 已提交
469
                                                               - len(text) - 2)
L
LDOUBLEV 已提交
470 471 472 473 474 475 476
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]
W
WenmuZhou 已提交
477 478 479 480 481 482 483 484 485 486

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
T
tink2123 已提交
487 488


T
tink2123 已提交
489 490 491 492 493 494 495 496
class SEEDLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
497 498
        super(SEEDLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
499 500

    def add_special_char(self, dict_character):
T
tink2123 已提交
501
        self.padding = "padding"
T
tink2123 已提交
502
        self.end_str = "eos"
T
tink2123 已提交
503 504 505 506
        self.unknown = "unknown"
        dict_character = dict_character + [
            self.end_str, self.padding, self.unknown
        ]
T
tink2123 已提交
507 508 509 510 511 512 513 514 515
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
T
rm anno  
tink2123 已提交
516
        data['length'] = np.array(len(text)) + 1  # conclude eos
T
tink2123 已提交
517 518
        text = text + [len(self.character) - 3] + [len(self.character) - 2] * (
            self.max_text_len - len(text) - 1)
T
tink2123 已提交
519 520 521 522
        data['label'] = np.array(text)
        return data


T
tink2123 已提交
523 524 525 526 527 528 529 530
class SRNLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length=25,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
531 532
        super(SRNLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
533 534 535 536 537 538 539 540

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
T
tink2123 已提交
541
        char_num = len(self.character)
T
tink2123 已提交
542 543 544 545 546
        if text is None:
            return None
        if len(text) > self.max_text_len:
            return None
        data['length'] = np.array(len(text))
T
tink2123 已提交
547
        text = text + [char_num - 1] * (self.max_text_len - len(text))
T
tink2123 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
M
MissPenguin 已提交
565

L
LDOUBLEV 已提交
566

文幕地方's avatar
文幕地方 已提交
567
class TableLabelEncode(AttnLabelEncode):
M
MissPenguin 已提交
568
    """ Convert between text-label and text-index """
L
LDOUBLEV 已提交
569 570 571 572

    def __init__(self,
                 max_text_length,
                 character_dict_path,
文幕地方's avatar
文幕地方 已提交
573 574 575
                 replace_empty_cell_token=False,
                 merge_no_span_structure=False,
                 learn_empty_box=False,
文幕地方's avatar
fix bug  
文幕地方 已提交
576
                 point_num=2,
L
LDOUBLEV 已提交
577
                 **kwargs):
文幕地方's avatar
文幕地方 已提交
578 579 580 581 582 583 584
        self.max_text_len = max_text_length
        self.lower = False
        self.learn_empty_box = learn_empty_box
        self.merge_no_span_structure = merge_no_span_structure
        self.replace_empty_cell_token = replace_empty_cell_token

        dict_character = []
M
MissPenguin 已提交
585 586
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
文幕地方's avatar
文幕地方 已提交
587 588 589 590 591 592 593 594 595
            for line in lines:
                line = line.decode('utf-8').strip("\n").strip("\r\n")
                dict_character.append(line)

        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.idx2char = {v: k for k, v in self.dict.items()}
L
LDOUBLEV 已提交
596

文幕地方's avatar
文幕地方 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
        self.character = dict_character
        self.point_num = point_num
        self.pad_idx = self.dict[self.beg_str]
        self.start_idx = self.dict[self.beg_str]
        self.end_idx = self.dict[self.end_str]

        self.td_token = ['<td>', '<td', '<eb></eb>', '<td></td>']
        self.empty_bbox_token_dict = {
            "[]": '<eb></eb>',
            "[' ']": '<eb1></eb1>',
            "['<b>', ' ', '</b>']": '<eb2></eb2>',
            "['\\u2028', '\\u2028']": '<eb3></eb3>',
            "['<sup>', ' ', '</sup>']": '<eb4></eb4>',
            "['<b>', '</b>']": '<eb5></eb5>',
            "['<i>', ' ', '</i>']": '<eb6></eb6>',
            "['<b>', '<i>', '</i>', '</b>']": '<eb7></eb7>',
            "['<b>', '<i>', ' ', '</i>', '</b>']": '<eb8></eb8>',
            "['<i>', '</i>']": '<eb9></eb9>',
            "['<b>', ' ', '\\u2028', ' ', '\\u2028', ' ', '</b>']":
            '<eb10></eb10>',
        }
L
LDOUBLEV 已提交
618

文幕地方's avatar
文幕地方 已提交
619 620 621
    @property
    def _max_text_len(self):
        return self.max_text_len + 2
L
LDOUBLEV 已提交
622

M
MissPenguin 已提交
623 624
    def __call__(self, data):
        cells = data['cells']
文幕地方's avatar
文幕地方 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638
        structure = data['structure']
        if self.merge_no_span_structure:
            structure = self._merge_no_span_structure(structure)
        if self.replace_empty_cell_token:
            structure = self._replace_empty_cell_token(structure, cells)
        # remove empty token and add " " to span token
        new_structure = []
        for token in structure:
            if token != '':
                if 'span' in token and token[0] != ' ':
                    token = ' ' + token
                new_structure.append(token)
        # encode structure
        structure = self.encode(new_structure)
M
MissPenguin 已提交
639 640
        if structure is None:
            return None
文幕地方's avatar
文幕地方 已提交
641 642 643 644 645

        structure = [self.start_idx] + structure + [self.end_idx
                                                    ]  # add sos abd eos
        structure = structure + [self.pad_idx] * (self._max_text_len -
                                                  len(structure))  # pad
M
MissPenguin 已提交
646 647 648
        structure = np.array(structure)
        data['structure'] = structure

文幕地方's avatar
文幕地方 已提交
649
        if len(structure) > self._max_text_len:
M
MissPenguin 已提交
650 651
            return None

文幕地方's avatar
文幕地方 已提交
652 653
        # encode box
        bboxes = np.zeros(
文幕地方's avatar
fix bug  
文幕地方 已提交
654
            (self._max_text_len, self.point_num * 2), dtype=np.float32)
文幕地方's avatar
文幕地方 已提交
655 656 657
        bbox_masks = np.zeros((self._max_text_len, 1), dtype=np.float32)

        bbox_idx = 0
文幕地方's avatar
fix bug  
文幕地方 已提交
658

文幕地方's avatar
文幕地方 已提交
659 660
        for i, token in enumerate(structure):
            if self.idx2char[token] in self.td_token:
文幕地方's avatar
fix bug  
文幕地方 已提交
661 662
                if 'bbox' in cells[bbox_idx] and len(cells[bbox_idx][
                        'tokens']) > 0:
文幕地方's avatar
文幕地方 已提交
663 664 665 666 667 668 669 670 671
                    bbox = cells[bbox_idx]['bbox'].copy()
                    bbox = np.array(bbox, dtype=np.float32).reshape(-1)
                    bboxes[i] = bbox
                    bbox_masks[i] = 1.0
                if self.learn_empty_box:
                    bbox_masks[i] = 1.0
                bbox_idx += 1
        data['bboxes'] = bboxes
        data['bbox_masks'] = bbox_masks
M
MissPenguin 已提交
672 673
        return data

文幕地方's avatar
文幕地方 已提交
674
    def _merge_no_span_structure(self, structure):
M
MissPenguin 已提交
675
        """
文幕地方's avatar
fix bug  
文幕地方 已提交
676
        This code is refer from:
文幕地方's avatar
add ref  
文幕地方 已提交
677 678
        https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/table_recognition/data_preprocess.py
        """
文幕地方's avatar
文幕地方 已提交
679 680 681 682 683 684 685 686 687 688 689 690
        new_structure = []
        i = 0
        while i < len(structure):
            token = structure[i]
            if token == '<td>':
                token = '<td></td>'
                i += 1
            new_structure.append(token)
            i += 1
        return new_structure

    def _replace_empty_cell_token(self, token_list, cells):
文幕地方's avatar
add ref  
文幕地方 已提交
691 692 693 694 695
        """
        This fun code is refer from:
        https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/table_recognition/data_preprocess.py
        """

文幕地方's avatar
文幕地方 已提交
696 697 698 699 700 701 702 703 704
        bbox_idx = 0
        add_empty_bbox_token_list = []
        for token in token_list:
            if token in ['<td></td>', '<td', '<td>']:
                if 'bbox' not in cells[bbox_idx].keys():
                    content = str(cells[bbox_idx]['tokens'])
                    token = self.empty_bbox_token_dict[content]
                add_empty_bbox_token_list.append(token)
                bbox_idx += 1
M
MissPenguin 已提交
705
            else:
文幕地方's avatar
文幕地方 已提交
706 707
                add_empty_bbox_token_list.append(token)
        return add_empty_bbox_token_list
M
MissPenguin 已提交
708 709


文幕地方's avatar
文幕地方 已提交
710 711 712 713 714 715 716 717 718
class TableMasterLabelEncode(TableLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path,
                 replace_empty_cell_token=False,
                 merge_no_span_structure=False,
                 learn_empty_box=False,
文幕地方's avatar
fix bug  
文幕地方 已提交
719
                 point_num=2,
文幕地方's avatar
文幕地方 已提交
720 721 722 723
                 **kwargs):
        super(TableMasterLabelEncode, self).__init__(
            max_text_length, character_dict_path, replace_empty_cell_token,
            merge_no_span_structure, learn_empty_box, point_num, **kwargs)
文幕地方's avatar
fix bug  
文幕地方 已提交
724 725
        self.pad_idx = self.dict[self.pad_str]
        self.unknown_idx = self.dict[self.unknown_str]
文幕地方's avatar
文幕地方 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

    @property
    def _max_text_len(self):
        return self.max_text_len

    def add_special_char(self, dict_character):
        self.beg_str = '<SOS>'
        self.end_str = '<EOS>'
        self.unknown_str = '<UKN>'
        self.pad_str = '<PAD>'
        dict_character = dict_character
        dict_character = dict_character + [
            self.unknown_str, self.beg_str, self.end_str, self.pad_str
        ]
        return dict_character


class TableBoxEncode(object):
    def __init__(self, use_xywh=False, **kwargs):
        self.use_xywh = use_xywh

    def __call__(self, data):
        img_height, img_width = data['image'].shape[:2]
        bboxes = data['bboxes']
        if self.use_xywh and bboxes.shape[1] == 4:
            bboxes = self.xyxy2xywh(bboxes)
        bboxes[:, 0::2] /= img_width
        bboxes[:, 1::2] /= img_height
        data['bboxes'] = bboxes
        return data

    def xyxy2xywh(self, bboxes):
        """
        Convert coord (x1,y1,x2,y2) to (x,y,w,h).
        where (x1,y1) is top-left, (x2,y2) is bottom-right.
        (x,y) is bbox center and (w,h) is width and height.
        :param bboxes: (x1, y1, x2, y2)
        :return:
        """
        new_bboxes = np.empty_like(bboxes)
        new_bboxes[:, 0] = (bboxes[:, 0] + bboxes[:, 2]) / 2  # x center
        new_bboxes[:, 1] = (bboxes[:, 1] + bboxes[:, 3]) / 2  # y center
        new_bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0]  # width
        new_bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1]  # height
        return new_bboxes
A
andyjpaddle 已提交
771 772 773 774 775 776 777 778 779 780


class SARLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
781 782
        super(SARLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
A
andyjpaddle 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1

        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len - 1:
            return None
        data['length'] = np.array(len(text))
        target = [self.start_idx] + text + [self.end_idx]
        padded_text = [self.padding_idx for _ in range(self.max_text_len)]
T
tink2123 已提交
808

A
andyjpaddle 已提交
809 810 811 812 813 814
        padded_text[:len(target)] = target
        data['label'] = np.array(padded_text)
        return data

    def get_ignored_tokens(self):
        return [self.padding_idx]
815 816


817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
class PRENLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path,
                 use_space_char=False,
                 **kwargs):
        super(PRENLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

    def add_special_char(self, dict_character):
        padding_str = '<PAD>'  # 0 
        end_str = '<EOS>'  # 1
        unknown_str = '<UNK>'  # 2

        dict_character = [padding_str, end_str, unknown_str] + dict_character
        self.padding_idx = 0
        self.end_idx = 1
        self.unknown_idx = 2

        return dict_character

    def encode(self, text):
        if len(text) == 0 or len(text) >= self.max_text_len:
            return None
        if self.lower:
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                text_list.append(self.unknown_idx)
            else:
                text_list.append(self.dict[char])
        text_list.append(self.end_idx)
        if len(text_list) < self.max_text_len:
            text_list += [self.padding_idx] * (
                self.max_text_len - len(text_list))
        return text_list

    def __call__(self, data):
        text = data['label']
        encoded_text = self.encode(text)
        if encoded_text is None:
            return None
        data['label'] = np.array(encoded_text)
        return data


864 865
class VQATokenLabelEncode(object):
    """
文幕地方's avatar
文幕地方 已提交
866
    Label encode for NLP VQA methods
867 868 869 870 871 872 873
    """

    def __init__(self,
                 class_path,
                 contains_re=False,
                 add_special_ids=False,
                 algorithm='LayoutXLM',
874
                 use_textline_bbox_info=True,
875 876 877 878
                 infer_mode=False,
                 ocr_engine=None,
                 **kwargs):
        super(VQATokenLabelEncode, self).__init__()
文幕地方's avatar
文幕地方 已提交
879
        from paddlenlp.transformers import LayoutXLMTokenizer, LayoutLMTokenizer, LayoutLMv2Tokenizer
880 881 882 883 884 885 886 887 888
        from ppocr.utils.utility import load_vqa_bio_label_maps
        tokenizer_dict = {
            'LayoutXLM': {
                'class': LayoutXLMTokenizer,
                'pretrained_model': 'layoutxlm-base-uncased'
            },
            'LayoutLM': {
                'class': LayoutLMTokenizer,
                'pretrained_model': 'layoutlm-base-uncased'
文幕地方's avatar
文幕地方 已提交
889 890 891 892
            },
            'LayoutLMv2': {
                'class': LayoutLMv2Tokenizer,
                'pretrained_model': 'layoutlmv2-base-uncased'
893 894 895 896 897 898 899 900 901 902
            }
        }
        self.contains_re = contains_re
        tokenizer_config = tokenizer_dict[algorithm]
        self.tokenizer = tokenizer_config['class'].from_pretrained(
            tokenizer_config['pretrained_model'])
        self.label2id_map, id2label_map = load_vqa_bio_label_maps(class_path)
        self.add_special_ids = add_special_ids
        self.infer_mode = infer_mode
        self.ocr_engine = ocr_engine
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
        self.use_textline_bbox_info = use_textline_bbox_info

    def split_bbox(self, bbox, text, tokenizer):
        words = text.split()
        token_bboxes = []
        curr_word_idx = 0
        x1, y1, x2, y2 = bbox
        unit_w = (x2 - x1) / len(text)
        for idx, word in enumerate(words):
            curr_w = len(word) * unit_w
            word_bbox = [x1, y1, x1 + curr_w, y2]
            token_bboxes.extend([word_bbox] * len(tokenizer.tokenize(word)))
            x1 += (len(word) + 1) * unit_w
        return token_bboxes

    def filter_empty_contents(self, ocr_info):
        """
        find out the empty texts and remove the links
        """
        new_ocr_info = []
        empty_index = []
        for idx, info in enumerate(ocr_info):
            if len(info["transcription"]) > 0:
                new_ocr_info.append(copy.deepcopy(info))
            else:
                empty_index.append(info["id"])

        for idx, info in enumerate(new_ocr_info):
            new_link = []
            for link in info["linking"]:
                if link[0] in empty_index or link[1] in empty_index:
                    continue
                new_link.append(link)
            new_ocr_info[idx]["linking"] = new_link
        return new_ocr_info
938 939

    def __call__(self, data):
文幕地方's avatar
文幕地方 已提交
940 941
        # load bbox and label info
        ocr_info = self._load_ocr_info(data)
942

943 944 945 946 947
        # for re
        train_re = self.contains_re and not self.infer_mode
        if train_re:
            ocr_info = self.filter_empty_contents(ocr_info)

文幕地方's avatar
文幕地方 已提交
948
        height, width, _ = data['image'].shape
949 950 951 952 953

        words_list = []
        bbox_list = []
        input_ids_list = []
        token_type_ids_list = []
文幕地方's avatar
文幕地方 已提交
954
        segment_offset_id = []
955 956
        gt_label_list = []

文幕地方's avatar
文幕地方 已提交
957 958 959 960 961 962 963
        entities = []

        if train_re:
            relations = []
            id2label = {}
            entity_id_to_index_map = {}
            empty_entity = set()
文幕地方's avatar
文幕地方 已提交
964 965 966 967

        data['ocr_info'] = copy.deepcopy(ocr_info)

        for info in ocr_info:
968 969 970
            text = info["transcription"]
            if len(text) <= 0:
                continue
文幕地方's avatar
文幕地方 已提交
971
            if train_re:
972
                # for re
973
                if len(text) == 0:
974 975 976 977
                    empty_entity.add(info["id"])
                    continue
                id2label[info["id"]] = info["label"]
                relations.extend([tuple(sorted(l)) for l in info["linking"]])
文幕地方's avatar
文幕地方 已提交
978
            # smooth_box
979
            info["bbox"] = self.trans_poly_to_bbox(info["points"])
980 981 982 983 984 985 986 987 988 989 990

            encode_res = self.tokenizer.encode(
                text, pad_to_max_seq_len=False, return_attention_mask=True)

            if not self.add_special_ids:
                # TODO: use tok.all_special_ids to remove
                encode_res["input_ids"] = encode_res["input_ids"][1:-1]
                encode_res["token_type_ids"] = encode_res["token_type_ids"][1:
                                                                            -1]
                encode_res["attention_mask"] = encode_res["attention_mask"][1:
                                                                            -1]
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

            if self.use_textline_bbox_info:
                bbox = [info["bbox"]] * len(encode_res["input_ids"])
            else:
                bbox = self.split_bbox(info["bbox"], info["transcription"],
                                       self.tokenizer)
            if len(bbox) <= 0:
                continue
            bbox = self._smooth_box(bbox, height, width)
            if self.add_special_ids:
                bbox.insert(0, [0, 0, 0, 0])
                bbox.append([0, 0, 0, 0])

文幕地方's avatar
文幕地方 已提交
1004 1005 1006 1007 1008 1009
            # parse label
            if not self.infer_mode:
                label = info['label']
                gt_label = self._parse_label(label, encode_res)

            # construct entities for re
文幕地方's avatar
文幕地方 已提交
1010 1011 1012 1013
            if train_re:
                if gt_label[0] != self.label2id_map["O"]:
                    entity_id_to_index_map[info["id"]] = len(entities)
                    label = label.upper()
1014 1015 1016 1017
                    entities.append({
                        "start": len(input_ids_list),
                        "end":
                        len(input_ids_list) + len(encode_res["input_ids"]),
文幕地方's avatar
文幕地方 已提交
1018
                        "label": label.upper(),
1019
                    })
文幕地方's avatar
文幕地方 已提交
1020 1021 1022 1023 1024 1025
            else:
                entities.append({
                    "start": len(input_ids_list),
                    "end": len(input_ids_list) + len(encode_res["input_ids"]),
                    "label": 'O',
                })
1026 1027
            input_ids_list.extend(encode_res["input_ids"])
            token_type_ids_list.extend(encode_res["token_type_ids"])
1028
            bbox_list.extend(bbox)
1029
            words_list.append(text)
文幕地方's avatar
文幕地方 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
            segment_offset_id.append(len(input_ids_list))
            if not self.infer_mode:
                gt_label_list.extend(gt_label)

        data['input_ids'] = input_ids_list
        data['token_type_ids'] = token_type_ids_list
        data['bbox'] = bbox_list
        data['attention_mask'] = [1] * len(input_ids_list)
        data['labels'] = gt_label_list
        data['segment_offset_id'] = segment_offset_id
1040 1041 1042 1043
        data['tokenizer_params'] = dict(
            padding_side=self.tokenizer.padding_side,
            pad_token_type_id=self.tokenizer.pad_token_type_id,
            pad_token_id=self.tokenizer.pad_token_id)
文幕地方's avatar
文幕地方 已提交
1044
        data['entities'] = entities
1045

文幕地方's avatar
文幕地方 已提交
1046 1047 1048 1049 1050
        if train_re:
            data['relations'] = relations
            data['id2label'] = id2label
            data['empty_entity'] = empty_entity
            data['entity_id_to_index_map'] = entity_id_to_index_map
1051 1052
        return data

1053 1054 1055 1056 1057 1058
    def trans_poly_to_bbox(self, poly):
        x1 = np.min([p[0] for p in poly])
        x2 = np.max([p[0] for p in poly])
        y1 = np.min([p[1] for p in poly])
        y2 = np.max([p[1] for p in poly])
        return [x1, y1, x2, y2]
文幕地方's avatar
文幕地方 已提交
1059

1060
    def _load_ocr_info(self, data):
文幕地方's avatar
文幕地方 已提交
1061 1062 1063 1064 1065
        if self.infer_mode:
            ocr_result = self.ocr_engine.ocr(data['image'], cls=False)
            ocr_info = []
            for res in ocr_result:
                ocr_info.append({
1066 1067 1068
                    "transcription": res[1][0],
                    "bbox": self.trans_poly_to_bbox(res[0]),
                    "points": res[0],
文幕地方's avatar
文幕地方 已提交
1069 1070 1071 1072 1073 1074
                })
            return ocr_info
        else:
            info = data['label']
            # read text info
            info_dict = json.loads(info)
1075
            return info_dict
文幕地方's avatar
文幕地方 已提交
1076

1077 1078 1079 1080 1081 1082 1083 1084
    def _smooth_box(self, bboxes, height, width):
        bboxes = np.array(bboxes)
        bboxes[:, 0] = bboxes[:, 0] * 1000 / width
        bboxes[:, 2] = bboxes[:, 2] * 1000 / width
        bboxes[:, 1] = bboxes[:, 1] * 1000 / height
        bboxes[:, 3] = bboxes[:, 3] * 1000 / height
        bboxes = bboxes.astype("int64").tolist()
        return bboxes
文幕地方's avatar
文幕地方 已提交
1085 1086 1087

    def _parse_label(self, label, encode_res):
        gt_label = []
1088
        if label.lower() in ["other", "others", "ignore"]:
文幕地方's avatar
文幕地方 已提交
1089 1090 1091 1092 1093 1094
            gt_label.extend([0] * len(encode_res["input_ids"]))
        else:
            gt_label.append(self.label2id_map[("b-" + label).upper()])
            gt_label.extend([self.label2id_map[("i-" + label).upper()]] *
                            (len(encode_res["input_ids"]) - 1))
        return gt_label
A
andyjpaddle 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124


class MultiLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
        super(MultiLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

        self.ctc_encode = CTCLabelEncode(max_text_length, character_dict_path,
                                         use_space_char, **kwargs)
        self.sar_encode = SARLabelEncode(max_text_length, character_dict_path,
                                         use_space_char, **kwargs)

    def __call__(self, data):
        data_ctc = copy.deepcopy(data)
        data_sar = copy.deepcopy(data)
        data_out = dict()
        data_out['img_path'] = data.get('img_path', None)
        data_out['image'] = data['image']
        ctc = self.ctc_encode.__call__(data_ctc)
        sar = self.sar_encode.__call__(data_sar)
        if ctc is None or sar is None:
            return None
        data_out['label_ctc'] = ctc['label']
        data_out['label_sar'] = sar['label']
        data_out['length'] = ctc['length']
        return data_out
A
add vl  
andyjpaddle 已提交
1125 1126


1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
class NRTRLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):

        super(NRTRLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len - 1:
            return None
        data['length'] = np.array(len(text))
        text.insert(0, 2)
        text.append(3)
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
        return data

    def add_special_char(self, dict_character):
        dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
        return dict_character


class ViTSTRLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 ignore_index=0,
                 **kwargs):

        super(ViTSTRLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
        self.ignore_index = ignore_index

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
        data['length'] = np.array(len(text))
        text.insert(0, self.ignore_index)
        text.append(1)
        text = text + [self.ignore_index] * (self.max_text_len + 2 - len(text))
        data['label'] = np.array(text)
        return data

    def add_special_char(self, dict_character):
        dict_character = ['<s>', '</s>'] + dict_character
        return dict_character


class ABINetLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 ignore_index=100,
                 **kwargs):

        super(ABINetLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
        self.ignore_index = ignore_index

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
        data['length'] = np.array(len(text))
        text.append(0)
        text = text + [self.ignore_index] * (self.max_text_len + 1 - len(text))
        data['label'] = np.array(text)
        return data

    def add_special_char(self, dict_character):
        dict_character = ['</s>'] + dict_character
        return dict_character
A
add vl  
andyjpaddle 已提交
1221 1222


A
add vl  
andyjpaddle 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
class VLLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
        super(VLLabelEncode, self).__init__(max_text_length,
                                            character_dict_path, use_space_char)

    def __call__(self, data):
        text = data['label']  # original string
        # generate occluded text
        len_str = len(text)
        if len_str <= 0:
            return None
        change_num = 1
        order = list(range(len_str))
        change_id = sample(order, change_num)[0]
        label_sub = text[change_id]
        if change_id == (len_str - 1):
            label_res = text[:change_id]
        elif change_id == 0:
            label_res = text[1:]
        else:
            label_res = text[:change_id] + text[change_id + 1:]

        data['label_res'] = label_res  # remaining string
        data['label_sub'] = label_sub  # occluded character
        data['label_id'] = change_id  # character index
        # encode label
        text = self.encode(text)
        if text is None:
            return None
        text = [i + 1 for i in text]
        data['length'] = np.array(len(text))
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
        label_res = self.encode(label_res)
        label_sub = self.encode(label_sub)
        if label_res is None:
            label_res = []
        else:
            label_res = [i + 1 for i in label_res]
        if label_sub is None:
            label_sub = []
        else:
            label_sub = [i + 1 for i in label_sub]
        data['length_res'] = np.array(len(label_res))
        data['length_sub'] = np.array(len(label_sub))
        label_res = label_res + [0] * (self.max_text_len - len(label_res))
        label_sub = label_sub + [0] * (self.max_text_len - len(label_sub))
        data['label_res'] = np.array(label_res)
        data['label_sub'] = np.array(label_sub)
        return data