sast_process.py 27.0 KB
Newer Older
M
MissPenguin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import math
import cv2
import numpy as np
import json
import sys
import os

__all__ = ['SASTProcessTrain']


class SASTProcessTrain(object):
    def __init__(self,
                 image_shape = [512, 512],
                 min_crop_size = 24,
                 min_crop_side_ratio = 0.3,
                 min_text_size = 10,
                 max_text_size = 512,
                 **kwargs):
        self.input_size = image_shape[1]
        self.min_crop_size = min_crop_size
        self.min_crop_side_ratio = min_crop_side_ratio
        self.min_text_size = min_text_size
        self.max_text_size = max_text_size

    def quad_area(self, poly):
        """
        compute area of a polygon
        :param poly:
        :return:
        """
        edge = [
            (poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
            (poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
            (poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
            (poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])
        ]
        return np.sum(edge) / 2.

    def gen_quad_from_poly(self, poly):
        """
        Generate min area quad from poly.
        """
        point_num = poly.shape[0]
        min_area_quad = np.zeros((4, 2), dtype=np.float32)
        if True:
            rect = cv2.minAreaRect(poly.astype(np.int32))  # (center (x,y), (width, height), angle of rotation)
            center_point = rect[0]
            box = np.array(cv2.boxPoints(rect))

            first_point_idx = 0
            min_dist = 1e4
            for i in range(4):
                dist = np.linalg.norm(box[(i + 0) % 4] - poly[0]) + \
                    np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1]) + \
                    np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2]) + \
                    np.linalg.norm(box[(i + 3) % 4] - poly[-1])
                if dist < min_dist:
                    min_dist = dist
                    first_point_idx = i
            for i in range(4):
                min_area_quad[i] = box[(first_point_idx + i) % 4]

        return min_area_quad

    def check_and_validate_polys(self, polys, tags, xxx_todo_changeme):
        """
        check so that the text poly is in the same direction,
        and also filter some invalid polygons
        :param polys:
        :param tags:
        :return:
        """
        (h, w) = xxx_todo_changeme
        if polys.shape[0] == 0:
            return polys, np.array([]), np.array([])
        polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
        polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1)

        validated_polys = []
        validated_tags = []
        hv_tags = []
        for poly, tag in zip(polys, tags):
            quad = self.gen_quad_from_poly(poly)
            p_area = self.quad_area(quad)
            if abs(p_area) < 1:
                print('invalid poly')
                continue
            if p_area > 0:
                if tag == False:
                    print('poly in wrong direction')
                    tag = True # reversed cases should be ignore
                poly = poly[(0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1), :]
                quad = quad[(0, 3, 2, 1), :]

            len_w = np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[3] - quad[2])
            len_h = np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2])
            hv_tag = 1
        
            if len_w * 2.0 <  len_h:
                hv_tag = 0

            validated_polys.append(poly)
            validated_tags.append(tag)
            hv_tags.append(hv_tag)
        return np.array(validated_polys), np.array(validated_tags), np.array(hv_tags)

    def crop_area(self, im, polys, tags, hv_tags, crop_background=False, max_tries=25):
        """
        make random crop from the input image
        :param im:
        :param polys:
        :param tags:
        :param crop_background:
        :param max_tries: 50 -> 25
        :return:
        """
        h, w, _ = im.shape
        pad_h = h // 10
        pad_w = w // 10
        h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
        w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
        for poly in polys:
            poly = np.round(poly, decimals=0).astype(np.int32)
            minx = np.min(poly[:, 0])
            maxx = np.max(poly[:, 0])
            w_array[minx + pad_w: maxx + pad_w] = 1
            miny = np.min(poly[:, 1])
            maxy = np.max(poly[:, 1])
            h_array[miny + pad_h: maxy + pad_h] = 1
        # ensure the cropped area not across a text
        h_axis = np.where(h_array == 0)[0]
        w_axis = np.where(w_array == 0)[0]
        if len(h_axis) == 0 or len(w_axis) == 0:
            return im, polys, tags, hv_tags
        for i in range(max_tries):
            xx = np.random.choice(w_axis, size=2)
            xmin = np.min(xx) - pad_w
            xmax = np.max(xx) - pad_w
            xmin = np.clip(xmin, 0, w - 1)
            xmax = np.clip(xmax, 0, w - 1)
            yy = np.random.choice(h_axis, size=2)
            ymin = np.min(yy) - pad_h
            ymax = np.max(yy) - pad_h
            ymin = np.clip(ymin, 0, h - 1)
            ymax = np.clip(ymax, 0, h - 1)
            # if xmax - xmin < ARGS.min_crop_side_ratio * w or \
            #   ymax - ymin < ARGS.min_crop_side_ratio * h:
            if xmax - xmin < self.min_crop_size or \
            ymax - ymin < self.min_crop_size:
                # area too small
                continue
            if polys.shape[0] != 0:
                poly_axis_in_area = (polys[:, :, 0] >= xmin) & (polys[:, :, 0] <= xmax) \
                                    & (polys[:, :, 1] >= ymin) & (polys[:, :, 1] <= ymax)
                selected_polys = np.where(np.sum(poly_axis_in_area, axis=1) == 4)[0]
            else:
                selected_polys = []
            if len(selected_polys) == 0:
                # no text in this area
                if crop_background:
                    return im[ymin : ymax + 1, xmin : xmax + 1, :], \
                        polys[selected_polys], tags[selected_polys], hv_tags[selected_polys], txts
                else:
                    continue
            im = im[ymin: ymax + 1, xmin: xmax + 1, :]
            polys = polys[selected_polys]
            tags = tags[selected_polys]
            hv_tags = hv_tags[selected_polys]
            polys[:, :, 0] -= xmin
            polys[:, :, 1] -= ymin
            return im, polys, tags, hv_tags

        return im, polys, tags, hv_tags

    def generate_direction_map(self, poly_quads, direction_map):
        """
        """
        width_list = []
        height_list = []
        for quad in poly_quads:
            quad_w = (np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3])) / 2.0
            quad_h = (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[2] - quad[1])) / 2.0
            width_list.append(quad_w)
            height_list.append(quad_h)
        norm_width = max(sum(width_list) / (len(width_list) +  1e-6), 1.0)
        average_height = max(sum(height_list) / (len(height_list) + 1e-6), 1.0)

        for quad in poly_quads:
            direct_vector_full = ((quad[1] + quad[2]) - (quad[0] + quad[3])) / 2.0
            direct_vector = direct_vector_full / (np.linalg.norm(direct_vector_full) + 1e-6) * norm_width
            direction_label = tuple(map(float, [direct_vector[0], direct_vector[1], 1.0 / (average_height + 1e-6)]))
            cv2.fillPoly(direction_map, quad.round().astype(np.int32)[np.newaxis, :, :], direction_label)
        return direction_map

    def calculate_average_height(self, poly_quads):
        """
        """
        height_list = []
        for quad in poly_quads:
            quad_h = (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[2] - quad[1])) / 2.0
            height_list.append(quad_h)
        average_height = max(sum(height_list) / len(height_list), 1.0)
        return average_height

    def generate_tcl_label(self, hw, polys, tags, ds_ratio,
                            tcl_ratio=0.3, shrink_ratio_of_width=0.15):
        """
        Generate polygon.
        """
        h, w = hw
        h, w = int(h * ds_ratio), int(w * ds_ratio)
        polys = polys * ds_ratio

        score_map = np.zeros((h, w,), dtype=np.float32)
        tbo_map = np.zeros((h, w, 5), dtype=np.float32)
        training_mask = np.ones((h, w,), dtype=np.float32)
        direction_map = np.ones((h, w, 3)) * np.array([0, 0, 1]).reshape([1, 1, 3]).astype(np.float32)

        for poly_idx, poly_tag in enumerate(zip(polys, tags)):
            poly = poly_tag[0] 
            tag = poly_tag[1]

            # generate min_area_quad
            min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly)
            min_area_quad_h = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[3]) +
                                    np.linalg.norm(min_area_quad[1] - min_area_quad[2]))
            min_area_quad_w = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[1]) +
                                    np.linalg.norm(min_area_quad[2] - min_area_quad[3]))

            if min(min_area_quad_h, min_area_quad_w) < self.min_text_size * ds_ratio \
                or min(min_area_quad_h, min_area_quad_w) > self.max_text_size * ds_ratio:
                continue

            if tag:
                # continue
                cv2.fillPoly(training_mask, poly.astype(np.int32)[np.newaxis, :, :], 0.15)
            else:
                tcl_poly = self.poly2tcl(poly, tcl_ratio)
                tcl_quads = self.poly2quads(tcl_poly)
                poly_quads = self.poly2quads(poly)
                # stcl map
                stcl_quads, quad_index = self.shrink_poly_along_width(tcl_quads, shrink_ratio_of_width=shrink_ratio_of_width,
                                                                expand_height_ratio=1.0 / tcl_ratio)
                # generate tcl map
                cv2.fillPoly(score_map, np.round(stcl_quads).astype(np.int32), 1.0)

                # generate tbo map
                for idx, quad in enumerate(stcl_quads):
                    quad_mask = np.zeros((h, w), dtype=np.float32)
                    quad_mask = cv2.fillPoly(quad_mask, np.round(quad[np.newaxis, :, :]).astype(np.int32), 1.0)
                    tbo_map = self.gen_quad_tbo(poly_quads[quad_index[idx]], quad_mask, tbo_map)
        return score_map, tbo_map, training_mask

    def generate_tvo_and_tco(self, hw, polys, tags, tcl_ratio=0.3, ds_ratio=0.25):
        """
        Generate tcl map, tvo map and tbo map.
        """
        h, w = hw
        h, w = int(h * ds_ratio), int(w * ds_ratio)
        polys = polys * ds_ratio
        poly_mask = np.zeros((h, w), dtype=np.float32)

        tvo_map = np.ones((9, h, w), dtype=np.float32)
        tvo_map[0:-1:2] = np.tile(np.arange(0, w), (h, 1))
        tvo_map[1:-1:2] = np.tile(np.arange(0, w), (h, 1)).T
        poly_tv_xy_map = np.zeros((8, h, w), dtype=np.float32)

        # tco map
        tco_map = np.ones((3, h, w), dtype=np.float32)
        tco_map[0] = np.tile(np.arange(0, w), (h, 1))
        tco_map[1] = np.tile(np.arange(0, w), (h, 1)).T
        poly_tc_xy_map = np.zeros((2, h, w), dtype=np.float32)

        poly_short_edge_map = np.ones((h, w), dtype=np.float32)

        for poly, poly_tag in zip(polys, tags):

            if poly_tag == True:
                continue

            # adjust point order for vertical poly
            poly = self.adjust_point(poly)

            # generate min_area_quad
            min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly)
            min_area_quad_h = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[3]) +
                                    np.linalg.norm(min_area_quad[1] - min_area_quad[2]))
            min_area_quad_w = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[1]) +
                                    np.linalg.norm(min_area_quad[2] - min_area_quad[3]))

            # generate tcl map and text, 128 * 128
            tcl_poly = self.poly2tcl(poly, tcl_ratio)

            # generate poly_tv_xy_map
            for idx in range(4):
                cv2.fillPoly(poly_tv_xy_map[2 * idx],
                            np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
                            float(min(max(min_area_quad[idx, 0], 0), w)))
                cv2.fillPoly(poly_tv_xy_map[2 * idx + 1],
                            np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
                            float(min(max(min_area_quad[idx, 1], 0), h)))

            # generate poly_tc_xy_map
            for idx in range(2):
                cv2.fillPoly(poly_tc_xy_map[idx],
                            np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32), float(center_point[idx]))

            # generate poly_short_edge_map
            cv2.fillPoly(poly_short_edge_map,
                        np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
                        float(max(min(min_area_quad_h, min_area_quad_w), 1.0)))

            # generate poly_mask and training_mask
            cv2.fillPoly(poly_mask, np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32), 1)

        tvo_map *= poly_mask
        tvo_map[:8] -= poly_tv_xy_map
        tvo_map[-1] /= poly_short_edge_map
        tvo_map = tvo_map.transpose((1, 2, 0))

        tco_map *= poly_mask
        tco_map[:2] -= poly_tc_xy_map
        tco_map[-1] /= poly_short_edge_map
        tco_map = tco_map.transpose((1, 2, 0))

        return tvo_map, tco_map

    def adjust_point(self, poly):
        """
        adjust point order.
        """
        point_num = poly.shape[0]
        if point_num == 4:
            len_1 = np.linalg.norm(poly[0] - poly[1])
            len_2 = np.linalg.norm(poly[1] - poly[2])
            len_3 = np.linalg.norm(poly[2] - poly[3])
            len_4 = np.linalg.norm(poly[3] - poly[0])

            if (len_1 + len_3) * 1.5 < (len_2 + len_4):
                poly = poly[[1, 2, 3, 0], :]

        elif point_num > 4:
            vector_1 = poly[0] - poly[1]
            vector_2 = poly[1] - poly[2]
            cos_theta = np.dot(vector_1, vector_2) / (np.linalg.norm(vector_1) * np.linalg.norm(vector_2) + 1e-6)
            theta = np.arccos(np.round(cos_theta, decimals=4))

            if abs(theta) > (70 / 180 * math.pi):
                index = list(range(1, point_num)) + [0]
                poly = poly[np.array(index), :]
        return poly

    def gen_min_area_quad_from_poly(self, poly):
        """
        Generate min area quad from poly.
        """
        point_num = poly.shape[0]
        min_area_quad = np.zeros((4, 2), dtype=np.float32)
        if point_num == 4:
            min_area_quad = poly
            center_point = np.sum(poly, axis=0) / 4
        else:
            rect = cv2.minAreaRect(poly.astype(np.int32))  # (center (x,y), (width, height), angle of rotation)
            center_point = rect[0]
            box = np.array(cv2.boxPoints(rect))

            first_point_idx = 0
            min_dist = 1e4
            for i in range(4):
                dist = np.linalg.norm(box[(i + 0) % 4] - poly[0]) + \
                    np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1]) + \
                    np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2]) + \
                    np.linalg.norm(box[(i + 3) % 4] - poly[-1])
                if dist < min_dist:
                    min_dist = dist
                    first_point_idx = i

            for i in range(4):
                min_area_quad[i] = box[(first_point_idx + i) % 4]

        return min_area_quad, center_point

    def shrink_quad_along_width(self, quad, begin_width_ratio=0., end_width_ratio=1.):
        """
        Generate shrink_quad_along_width.
        """
        ratio_pair = np.array([[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
        p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
        p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
        return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])

    def shrink_poly_along_width(self, quads, shrink_ratio_of_width, expand_height_ratio=1.0):
        """
        shrink poly with given length.
        """
        upper_edge_list = []

        def get_cut_info(edge_len_list, cut_len):
            for idx, edge_len in enumerate(edge_len_list):
                cut_len -= edge_len
                if cut_len <= 0.000001:
                    ratio = (cut_len + edge_len_list[idx]) / edge_len_list[idx]
                    return idx, ratio

        for quad in quads:
            upper_edge_len = np.linalg.norm(quad[0] - quad[1])
            upper_edge_list.append(upper_edge_len)

        # length of left edge and right edge.
        left_length = np.linalg.norm(quads[0][0] - quads[0][3]) * expand_height_ratio
        right_length = np.linalg.norm(quads[-1][1] - quads[-1][2]) * expand_height_ratio

        shrink_length = min(left_length, right_length, sum(upper_edge_list)) * shrink_ratio_of_width
        # shrinking length
        upper_len_left = shrink_length
        upper_len_right = sum(upper_edge_list) - shrink_length

        left_idx, left_ratio = get_cut_info(upper_edge_list, upper_len_left)
        left_quad = self.shrink_quad_along_width(quads[left_idx], begin_width_ratio=left_ratio, end_width_ratio=1)
        right_idx, right_ratio = get_cut_info(upper_edge_list, upper_len_right)
        right_quad = self.shrink_quad_along_width(quads[right_idx], begin_width_ratio=0, end_width_ratio=right_ratio)
        
        out_quad_list = []
        if left_idx == right_idx:
            out_quad_list.append([left_quad[0], right_quad[1], right_quad[2], left_quad[3]])
        else:
            out_quad_list.append(left_quad)
            for idx in range(left_idx + 1, right_idx):
                out_quad_list.append(quads[idx])
            out_quad_list.append(right_quad)

        return np.array(out_quad_list), list(range(left_idx, right_idx + 1))

    def vector_angle(self, A, B):
        """
        Calculate the angle between vector AB and x-axis positive direction.
        """
        AB = np.array([B[1] - A[1], B[0] - A[0]])
        return np.arctan2(*AB)

    def theta_line_cross_point(self, theta, point):
        """
        Calculate the line through given point and angle in ax + by + c =0 form.
        """
        x, y = point
        cos = np.cos(theta)
        sin = np.sin(theta)
        return [sin, -cos, cos * y - sin * x]

    def line_cross_two_point(self, A, B):
        """
        Calculate the line through given point A and B in ax + by + c =0 form.
        """
        angle = self.vector_angle(A, B)
        return self.theta_line_cross_point(angle, A)

    def average_angle(self, poly):
        """
        Calculate the average angle between left and right edge in given poly.
        """
        p0, p1, p2, p3 = poly
        angle30 = self.vector_angle(p3, p0)
        angle21 = self.vector_angle(p2, p1)
        return (angle30 + angle21) / 2

    def line_cross_point(self, line1, line2):
        """
        line1 and line2 in  0=ax+by+c form, compute the cross point of line1 and line2
        """
        a1, b1, c1 = line1
        a2, b2, c2 = line2
        d = a1 * b2 - a2 * b1

        if d == 0:
            #print("line1", line1)
            #print("line2", line2)
            print('Cross point does not exist')
            return np.array([0, 0], dtype=np.float32)
        else:
            x = (b1 * c2 - b2 * c1) / d
            y = (a2 * c1 - a1 * c2) / d

        return np.array([x, y], dtype=np.float32)

    def quad2tcl(self, poly, ratio):
        """
        Generate center line by poly clock-wise point. (4, 2)
        """
        ratio_pair = np.array([[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
        p0_3 = poly[0] + (poly[3] - poly[0]) * ratio_pair
        p1_2 = poly[1] + (poly[2] - poly[1]) * ratio_pair
        return np.array([p0_3[0], p1_2[0], p1_2[1], p0_3[1]])

    def poly2tcl(self, poly, ratio):
        """
        Generate center line by poly clock-wise point.
        """
        ratio_pair = np.array([[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
        tcl_poly = np.zeros_like(poly)
        point_num = poly.shape[0]

        for idx in range(point_num // 2):
            point_pair = poly[idx] + (poly[point_num - 1 - idx] - poly[idx]) * ratio_pair
            tcl_poly[idx] = point_pair[0]
            tcl_poly[point_num - 1 - idx] = point_pair[1]
        return tcl_poly

    def gen_quad_tbo(self, quad, tcl_mask, tbo_map):
        """
        Generate tbo_map for give quad.
        """
        # upper and lower line function: ax + by + c = 0;
        up_line = self.line_cross_two_point(quad[0], quad[1])
        lower_line = self.line_cross_two_point(quad[3], quad[2])

        quad_h = 0.5 * (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2]))
        quad_w = 0.5 * (np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3]))

        # average angle of left and right line.
        angle = self.average_angle(quad)

        xy_in_poly = np.argwhere(tcl_mask == 1)
        for y, x in xy_in_poly:
            point = (x, y)
            line = self.theta_line_cross_point(angle, point)
            cross_point_upper = self.line_cross_point(up_line, line)
            cross_point_lower = self.line_cross_point(lower_line, line)
            ##FIX, offset reverse
            upper_offset_x, upper_offset_y = cross_point_upper - point
            lower_offset_x, lower_offset_y = cross_point_lower - point
            tbo_map[y, x, 0] = upper_offset_y
            tbo_map[y, x, 1] = upper_offset_x
            tbo_map[y, x, 2] = lower_offset_y
            tbo_map[y, x, 3] = lower_offset_x
            tbo_map[y, x, 4] = 1.0 / max(min(quad_h, quad_w), 1.0) * 2
        return tbo_map

    def poly2quads(self, poly):
        """
        Split poly into quads.
        """
        quad_list = []
        point_num = poly.shape[0]

        # point pair
        point_pair_list = []
        for idx in range(point_num // 2):
            point_pair = [poly[idx], poly[point_num - 1 - idx]]
            point_pair_list.append(point_pair)

        quad_num = point_num // 2 - 1
        for idx in range(quad_num):
            # reshape and adjust to clock-wise
            quad_list.append((np.array(point_pair_list)[[idx, idx + 1]]).reshape(4, 2)[[0, 2, 3, 1]])

        return np.array(quad_list)

    def __call__(self, data):
        im = data['image']
        text_polys = data['polys']
        text_tags = data['ignore_tags']
        if im is None:
            return None
        if text_polys.shape[0] == 0:
            return None

        h, w, _ = im.shape
        text_polys, text_tags, hv_tags = self.check_and_validate_polys(text_polys, text_tags, (h, w))

        if text_polys.shape[0] == 0:
            return None

        #set aspect ratio and keep area fix
        asp_scales = np.arange(1.0, 1.55, 0.1)
        asp_scale = np.random.choice(asp_scales)

        if np.random.rand() < 0.5:
            asp_scale = 1.0 / asp_scale
        asp_scale = math.sqrt(asp_scale)
        
        asp_wx = asp_scale
        asp_hy = 1.0 / asp_scale
        im = cv2.resize(im, dsize=None, fx=asp_wx, fy=asp_hy)
        text_polys[:, :, 0] *= asp_wx
        text_polys[:, :, 1] *= asp_hy

        h, w, _ = im.shape
        if max(h, w) > 2048:
            rd_scale = 2048.0 / max(h, w)
            im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)
            text_polys *= rd_scale
        h, w, _ = im.shape
        if min(h, w) < 16:
            return None

        #no background
        im, text_polys, text_tags, hv_tags = self.crop_area(im, \
            text_polys, text_tags, hv_tags, crop_background=False)
            
        if text_polys.shape[0] == 0:
            return None
        #continue for all ignore case
        if np.sum((text_tags * 1.0)) >= text_tags.size:
            return None
        new_h, new_w, _ = im.shape
        if (new_h is None) or (new_w is None):
            return None
        #resize image
        std_ratio = float(self.input_size) / max(new_w, new_h)
        rand_scales = np.array([0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0, 1.0, 1.0, 1.0, 1.0])
        rz_scale = std_ratio * np.random.choice(rand_scales)
        im = cv2.resize(im, dsize=None, fx=rz_scale, fy=rz_scale)
        text_polys[:, :, 0] *= rz_scale
        text_polys[:, :, 1] *= rz_scale
        
        #add gaussian blur
        if np.random.rand() < 0.1 * 0.5:
            ks = np.random.permutation(5)[0] + 1
            ks = int(ks/2)*2 + 1
            im =  cv2.GaussianBlur(im, ksize=(ks, ks), sigmaX=0, sigmaY=0)
        #add brighter
        if np.random.rand() < 0.1 * 0.5:
            im = im * (1.0 + np.random.rand() * 0.5)
            im = np.clip(im, 0.0, 255.0)
        #add darker
        if np.random.rand() < 0.1 * 0.5:
            im = im * (1.0 - np.random.rand() * 0.5)
            im = np.clip(im, 0.0, 255.0)
        
        # Padding the im to [input_size, input_size]
        new_h, new_w, _ = im.shape
        if min(new_w, new_h) < self.input_size * 0.5:
            return None

        im_padded = np.ones((self.input_size, self.input_size, 3), dtype=np.float32)
        im_padded[:, :, 2] = 0.485 * 255
        im_padded[:, :, 1] = 0.456 * 255
        im_padded[:, :, 0] = 0.406 * 255

        # Random the start position
        del_h = self.input_size - new_h
        del_w = self.input_size - new_w
        sh, sw = 0, 0
        if del_h > 1:
            sh = int(np.random.rand() * del_h)
        if del_w > 1:
            sw = int(np.random.rand() * del_w)

        # Padding
        im_padded[sh: sh + new_h, sw: sw + new_w, :] = im.copy()
        text_polys[:, :, 0] += sw
        text_polys[:, :, 1] += sh

        score_map, border_map, training_mask = self.generate_tcl_label((self.input_size, self.input_size), 
                            text_polys, text_tags, 0.25)
        
        # SAST head
        tvo_map, tco_map = self.generate_tvo_and_tco((self.input_size, self.input_size), text_polys, text_tags,  tcl_ratio=0.3, ds_ratio=0.25)
        # print("test--------tvo_map shape:", tvo_map.shape)

        im_padded[:, :, 2] -= 0.485 * 255
        im_padded[:, :, 1] -= 0.456 * 255
        im_padded[:, :, 0] -= 0.406 * 255
        im_padded[:, :, 2] /= (255.0 * 0.229) 
        im_padded[:, :, 1] /= (255.0 * 0.224) 
        im_padded[:, :, 0] /= (255.0 * 0.225) 
        im_padded = im_padded.transpose((2, 0, 1))        

        data['image'] = im_padded[::-1, :, :]
        data['score_map'] = score_map[np.newaxis, :, :]
        data['border_map'] = border_map.transpose((2, 0, 1))
        data['training_mask'] = training_mask[np.newaxis, :, :]
        data['tvo_map'] = tvo_map.transpose((2, 0, 1))
        data['tco_map'] = tco_map.transpose((2, 0, 1))
        return data